Optimal Local Simulations of a Quantum Singlet
- URL: http://arxiv.org/abs/2504.20953v1
- Date: Tue, 29 Apr 2025 17:24:32 GMT
- Title: Optimal Local Simulations of a Quantum Singlet
- Authors: David Llamas, Dmitry Chistikov, Adrian Kent, Mike Paterson, Olga Goulko,
- Abstract summary: Bell's seminal work showed that no local hidden variable (LHV) model can fully reproduce the quantum correlations of a two-qubit singlet state.<n>We numerically determine the LHV models maximizing anticorrelations for random axes separated by any fixed angle.<n>These findings enrich the understanding of Bell non-locality as a physical resource in quantum information theory and quantum cryptography.
- Score: 0.94371657253557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bell's seminal work showed that no local hidden variable (LHV) model can fully reproduce the quantum correlations of a two-qubit singlet state. His argument and later developments by Clauser et al. effectively rely on gaps between the anticorrelations achievable by classical models and quantum theory for projective measurements along randomly chosen axes separated by a fixed angle. However, the size of these gaps has to date remained unknown. Here we numerically determine the LHV models maximizing anticorrelations for random axes separated by any fixed angle, by mapping the problem onto ground state configurations of fixed-range spin models. We identify angles where this gap is largest and thus best suited for Bell tests. These findings enrich the understanding of Bell non-locality as a physical resource in quantum information theory and quantum cryptography.
Related papers
- Time evolution of randomness in Bell's experiment indicates 'Realism' is false [41.94295877935867]
We measure time evolution of Minimum Entropy and (estimated) Kolmogorov's Complexity of binary time series during short pulses.<n>We compare evolution between the cases with stations placed close and separated 24m in straight line.<n>This provides a clue about which one of the hypotheses necessary for the derivation and observation of Bell's inequalities is false.
arXiv Detail & Related papers (2025-04-04T20:39:15Z) - Crypto-nonlocality in arbitrarily dimensional systems [1.433758865948252]
Bell's theorem states that any model based on local variables cannot reproduce certain quantum correlations.<n>We develop a framework for constructing experimentally testable Leggett-type inequalities for arbitrary dimensions.
arXiv Detail & Related papers (2025-01-06T16:31:25Z) - Optimizing random local Hamiltonians by dissipation [44.99833362998488]
We prove that a simplified quantum Gibbs sampling algorithm achieves a $Omega(frac1k)$-fraction approximation of the optimum.
Our results suggest that finding low-energy states for sparsified (quasi)local spin and fermionic models is quantumly easy but classically nontrivial.
arXiv Detail & Related papers (2024-11-04T20:21:16Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.<n>This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantum-classical correspondence of strongly chaotic many-body spin
models [0.0]
We study the quantum-classical correspondence for systems with interacting spin-particles that are strongly chaotic in the classical limit.
Our analysis of the Lyapunov spectra reveals that the largest Lyapunov exponent agrees with the Lyapunov exponent.
In the quantum domain, our analysis of the Hamiltonian matrix in a proper representation allows us to obtain the conditions for the onset of quantum chaos.
arXiv Detail & Related papers (2022-11-18T19:00:01Z) - Transition to chaos in extended systems and their quantum impurity
models [0.0]
Chaos sets a fundamental limit to quantum-information processing schemes.
We study the onset of chaos in spatially extended quantum many-body systems that are relevant to quantum optical devices.
arXiv Detail & Related papers (2022-05-02T18:01:09Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Entanglement dynamics of thermofield double states in integrable models [0.0]
We study the entanglement dynamics of thermofield double (TFD) states in integrable spin chains and quantum field theories.
We show that, for a natural choice of the Hamiltonian eigenbasis, the TFD evolution may be interpreted as a quantum quench from an initial state.
We conjecture a formula for the entanglement dynamics, which is valid for both discrete and continuous integrable field theories.
arXiv Detail & Related papers (2021-12-03T16:40:36Z) - Non-Markovianity of Quantum Brownian Motion [0.0]
We study quantum non-Markovian dynamics of the Caldeira-Leggett model, a prototypical model for quantum Brownian motion.
A comparison of our results with the corresponding results for the spin-boson problem show a remarkable similarity in the structure of non-Markovian behavior of the two paradigmatic models.
arXiv Detail & Related papers (2020-07-06T16:35:09Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.