QAOA Parameter Transferability for Maximum Independent Set using Graph Attention Networks
- URL: http://arxiv.org/abs/2504.21135v1
- Date: Tue, 29 Apr 2025 19:41:05 GMT
- Title: QAOA Parameter Transferability for Maximum Independent Set using Graph Attention Networks
- Authors: Hanjing Xu, Xiaoyuan Liu, Alex Pothen, Ilya Safro,
- Abstract summary: The quantum approximate optimization algorithm (QAOA) is one of the promising variational approaches of quantum computing to solve hybrid variational problems.<n>In this work, we propose a QAOA parameter transfer scheme using Graph Attention Networks (GAT) to solve Independent Set (MIS) problems.<n>We also design a distributed resource-aware algorithm for MIS (HyDRAMIS) which decomposes large problems into smaller problems.
- Score: 1.4660766608996791
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The quantum approximate optimization algorithm (QAOA) is one of the promising variational approaches of quantum computing to solve combinatorial optimization problems. In QAOA, variational parameters need to be optimized by solving a series of nonlinear, nonconvex optimization programs. In this work, we propose a QAOA parameter transfer scheme using Graph Attention Networks (GAT) to solve Maximum Independent Set (MIS) problems. We prepare optimized parameters for graphs of 12 and 14 vertices and use GATs to transfer their parameters to larger graphs. Additionally, we design a hybrid distributed resource-aware algorithm for MIS (HyDRA-MIS), which decomposes large problems into smaller ones that can fit onto noisy intermediate-scale quantum (NISQ) computers. We integrate our GAT-based parameter transfer approach to HyDRA-MIS and demonstrate competitive results compared to KaMIS, a state-of-the-art classical MIS solver, on graphs with several thousands vertices.
Related papers
- Cross-Problem Parameter Transfer in Quantum Approximate Optimization Algorithm: A Machine Learning Approach [0.7560883489000579]
We study whether pretrained QAOA parameters of MaxCut can be used as is or to warm start the Maximum Independent Set (MIS) circuits.<n>Our experimental results show that such parameter transfer can significantly reduce the number of optimization iterations required.
arXiv Detail & Related papers (2025-04-14T21:56:11Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Graph Representation Learning for Parameter Transferability in Quantum Approximate Optimization Algorithm [1.0971022294548696]
The quantum approximate optimization algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage through quantum-enhanced optimization.
In this work, we apply five different graph embedding techniques to determine good donor candidates for parameter transferability.
Using this technique, we effectively reduce the number of iterations required for parameter optimization, obtaining an approximate solution to the target problem with an order of magnitude speedup.
arXiv Detail & Related papers (2024-01-12T16:01:53Z) - Similarity-Based Parameter Transferability in the Quantum Approximate
Optimization Algorithm [2.985148456817082]
We show clustering of optimal QAOA parameters around specific values.
successful transferability of parameters between different QAOA instances can be explained.
We show that one can use optimal donor graph QAOA parameters as near-optimal parameters for larger acceptor graphs with comparable approximation ratios.
arXiv Detail & Related papers (2023-07-11T16:35:49Z) - General Hamiltonian Representation of ML Detection Relying on the
Quantum Approximate Optimization Algorithm [74.6114458993128]
The quantum approximate optimization algorithm (QAOA) conceived for solving optimization problems can be run on the existing noisy intermediate-scale quantum (NISQ) devices.
We solve the maximum likelihood (ML) detection problem for general constellations by appropriately adapting the QAOA.
In particular, for an M-ary Gray-mapped quadrature amplitude modulation (MQAM) constellation, we show that the specific qubits encoding the in-phase components and those encoding the quadrature components are independent in the quantum system of interest.
arXiv Detail & Related papers (2022-04-11T14:11:24Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
We propose a strategy to give high approximation ratio on average, even at large circuit depths, by initializing QAOA with the optimal parameters obtained from the previous depths.
We test our strategy on the Max-cut problem of certain classes of graphs such as the 3-regular graphs and the Erd"os-R'enyi graphs.
arXiv Detail & Related papers (2021-08-11T15:44:16Z) - Transferability of optimal QAOA parameters between random graphs [3.321726991033431]
We show that convergence of the optimal QAOA parameters around specific values can be explained and predicted based on the local properties of the graphs.
We demonstrate how optimized parameters calculated for a 6-node random graph can be successfully used without modification as nearly optimal parameters for a 64-node random graph.
arXiv Detail & Related papers (2021-06-14T15:57:47Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.