Iceberg Beyond the Tip: Co-Compilation of a Quantum Error Detection Code and a Quantum Algorithm
- URL: http://arxiv.org/abs/2504.21172v1
- Date: Tue, 29 Apr 2025 20:47:20 GMT
- Title: Iceberg Beyond the Tip: Co-Compilation of a Quantum Error Detection Code and a Quantum Algorithm
- Authors: Yuwei Jin, Zichang He, Tianyi Hao, David Amaro, Swamit Tannu, Ruslan Shaydulin, Marco Pistoia,
- Abstract summary: This work focuses on the $[[k+2, k, 2]]$ Iceberg quantum error detection code, which is tailored to trapped-ion quantum processors.<n>We design new flexible fault-tolerant gadgets for the Iceberg code, which we then co-optimize with the algorithmic circuit.<n>We demonstrate better-than-unencoded performance for up to 34 algorithmic qubits, employing 510 algorithmic two-qubit gates and 1140 physical two-qubit gates.
- Score: 2.194223021560234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid progress in quantum hardware is expected to make them viable tools for the study of quantum algorithms in the near term. The timeline to useful algorithmic experimentation can be accelerated by techniques that use many noisy shots to produce an accurate estimate of the observable of interest. One such technique is to encode the quantum circuit using an error detection code and discard the samples for which an error has been detected. An underexplored property of error-detecting codes is the flexibility in the circuit encoding and fault-tolerant gadgets, which enables their co-optimization with the algorthmic circuit. However, standard circuit optimization tools cannot be used to exploit this flexibility as optimization must preserve the fault-tolerance of the gadget. In this work, we focus on the $[[k+2, k, 2]]$ Iceberg quantum error detection code, which is tailored to trapped-ion quantum processors. We design new flexible fault-tolerant gadgets for the Iceberg code, which we then co-optimize with the algorithmic circuit for the quantum approximate optimization algorithm (QAOA) using tree search. By co-optimizing the QAOA circuit and the Iceberg gadgets, we achieve an improvement in QAOA success probability from $44\%$ to $65\%$ and an increase in post-selection rate from $4\%$ to $33\%$ at 22 algorithmic qubits, utilizing 330 algorithmic two-qubit gates and 744 physical two-qubit gates on the Quantinuum H2-1 quantum computer, compared to the previous state-of-the-art hardware demonstration. Furthermore, we demonstrate better-than-unencoded performance for up to 34 algorithmic qubits, employing 510 algorithmic two-qubit gates and 1140 physical two-qubit gates.
Related papers
- Approximate Quantum Circuit Synthesis for Diagonal Unitary [15.973412320107673]
diagonal unitary synthesis plays a crucial role in quantum circuit synthesis problems.<n>We propose a quantum circuit synthesis algorithm to design diagonal unitary implementations based on specified quantum resource limits.<n>Our algorithm can synthesize diagonal unitary for quantum circuits with up to 15 qubits on an ordinary laptop.
arXiv Detail & Related papers (2024-12-02T08:54:23Z) - On the practicality of quantum sieving algorithms for the shortest vector problem [42.70026220176376]
lattice-based cryptography is one of the main candidates of post-quantum cryptography.<n> cryptographic security against quantum attackers is based on lattice problems like the shortest vector problem (SVP)<n>Asymptotic quantum speedups for solving SVP are known and rely on Grover's search.
arXiv Detail & Related papers (2024-10-17T16:54:41Z) - Performance of Quantum Approximate Optimization with Quantum Error Detection [2.0174252910776556]
Quantum approximate optimization algorithm (QAOA) is a promising candidate for scaling up.<n> achieving better-than-classical performance with QAOA is believed to require fault tolerance.<n>We demonstrate a partially fault-tolerant implementation of QAOA using the $[[k+2,k,2]]$ Iceberg'' error detection code.
arXiv Detail & Related papers (2024-09-18T16:24:43Z) - Route-Forcing: Scalable Quantum Circuit Mapping for Scalable Quantum Computing Architectures [41.39072840772559]
Route-Forcing is a quantum circuit mapping algorithm that shows an average speedup of $3.7times$.
We present a quantum circuit mapping algorithm that shows an average speedup of $3.7times$ compared to the state-of-the-art scalable techniques.
arXiv Detail & Related papers (2024-07-24T14:21:41Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Large-scale quantum approximate optimization on non-planar graphs with machine learning noise mitigation [0.46040036610482665]
Error mitigation extends the size of the quantum circuits that noisy devices can meaningfully execute.
We show a quantum approximate optimization algorithm (QAOA) on non-planar random regular graphs with up to 40 nodes enabled by a machine learning-based error mitigation.
arXiv Detail & Related papers (2023-07-26T18:00:07Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Towards Demonstrating Fault Tolerance in Small Circuits Using Bacon-Shor
Codes [5.352699766206807]
We study a next step - fault-tolerantly implementing quantum circuits.
We compute pseudo-thresholds for the Pauli error rate $p$ in a depolarizing noise model.
We see that multiple rounds of stabilizer measurements give an improvement over performing a single round at the end.
arXiv Detail & Related papers (2021-08-04T14:24:14Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Quantum Gate Pattern Recognition and Circuit Optimization for Scientific
Applications [1.6329956884407544]
We introduce two ideas for circuit optimization and combine them in a multi-tiered quantum circuit optimization protocol called AQCEL.
AQCEL is deployed on an iterative and efficient quantum algorithm designed to model final state radiation in high energy physics.
Our technique is generic and can be useful for a wide variety of quantum algorithms.
arXiv Detail & Related papers (2021-02-19T16:20:31Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.