Anyonization of bosons in one dimension: an effective swap model
- URL: http://arxiv.org/abs/2504.21208v1
- Date: Tue, 29 Apr 2025 22:24:04 GMT
- Title: Anyonization of bosons in one dimension: an effective swap model
- Authors: Botao Wang, Amit Vashisht, Yanliang Guo, Sudipta Dhar, Manuele Landini, Hanns-Christoph Nägerl, Nathan Goldman,
- Abstract summary: We introduce a novel framework for realizing anyonic correlations using the internal degrees of freedom of a spinor quantum gas.<n>Our work provides new avenues for engineering many-body anyonic behavior in quantum simulation platforms.
- Score: 0.7648917777333822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anyons emerge as elementary excitations in low-dimensional quantum systems and exhibit behavior distinct from bosons or fermions. Previous models of anyons in one dimension (1D) are mainly categorized into two types: those that rely on nontrivial scattering behavior, and those based on density-dependent hopping processes in discrete lattices. Here, we introduce a novel framework for realizing anyonic correlations using the internal degrees of freedom of a spinor quantum gas. We propose a "swap" model, which assigns a complex phase factor to the swapping processes between two different species, referred to as "host particles" and "impurities". The anyonic characteristics are demonstrated through the one-body correlator of the impurity, using a spin-charge separation analysis. For a single impurity, our swap model can be effectively implemented by applying tilt potentials in a strongly interacting quantum gas [Dhar et al., arXiv:2412.21131]. We further explore the dynamical properties of anyonic correlations and extend our analysis to the case of multiple impurities. Our work provides new avenues for engineering many-body anyonic behavior in quantum simulation platforms.
Related papers
- Constrained many-body phases in a $\mathbb{Z}_2$-Higgs lattice gauge theory [39.58317527488534]
We study a one-dimensional $mathbbZ$ lattice gauge theory coupled to soft-core bosonic matter at unit filling.<n>Through a combination of analytical perturbative approaches, we uncover a rich phase diagram driven by gauge-field-mediated resonant pair hopping.<n>The presence of a bunching state with large number fluctuations motivates experimental realizations in hybrid boson-qubit quantum simulation platforms.
arXiv Detail & Related papers (2025-03-05T19:00:07Z) - Anyonization of bosons [4.18312011599462]
We observe anyonic correlations, which emerge through the phenomenon of spin-charge separation, in a 1D strongly-interacting quantum gas.<n>Our work opens up the door to the exploration of non-equilibrium anyonic phenomena in a highly controllable setting.
arXiv Detail & Related papers (2024-12-30T18:07:22Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Anomalous localization in spin chains with tilted interactions [0.0]
lattice gauge theories involve dynamics of typically short-ranged interacting particles and dynamical fields.
We consider localization properties of a spin chain with interaction strength growing linearly along the chain as for the Schwinger model.
Our study is relevant for quantum simulators of lattice gauge theories implemented in state-of-the-art cold atom/ion devices.
arXiv Detail & Related papers (2024-01-25T18:16:52Z) - Diffusive modes of two-band fermions under number-conserving dissipative
dynamics [0.0]
Driven-dissipative protocols are proposed to control and create nontrivial quantum many-body correlated states.
We show the existence of diffusive modes in the particle-number-conserving dissipative dynamics.
arXiv Detail & Related papers (2023-08-12T12:52:56Z) - Nonstandard Hubbard model and electron pairing [0.0]
We present a non-standard Hubbard model applicable to arbitrary single-particle potential profiles and inter-particle interactions.
Our investigation demonstrates that long-range inter-particle interactions can induce a novel mechanism for repulsive particle pairing.
These findings carry significant implications for various phenomena, including the formation of flat bands, the emergence of superconductivity in twisted bilayer graphene, and the possibility of a novel metal-insulator transition.
arXiv Detail & Related papers (2023-07-31T15:01:16Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Linear-optical dynamics of one-dimensional anyons [0.0]
We study the dynamics of bosonic and fermionic anyons defined on a one-dimensional lattice.
We show how to exploit the Aharonov-Bohm effect exhibited by these particles to build a deterministic, entangling two-qubit gate.
In particular we prove that, for a specific value of the exchange factor, an anyonic mirror can generate cat states.
arXiv Detail & Related papers (2020-12-23T20:48:52Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.