論文の概要: Memorization and Knowledge Injection in Gated LLMs
- arxiv url: http://arxiv.org/abs/2504.21239v1
- Date: Wed, 30 Apr 2025 00:28:32 GMT
- ステータス: 情報取得中
- システム内更新日: 2025-05-02 15:43:26.918115
- Title: Memorization and Knowledge Injection in Gated LLMs
- Title(参考訳): ゲート型LDMにおける記憶と知識注入
- Authors: Xu Pan, Ely Hahami, Zechen Zhang, Haim Sompolinsky,
- Abstract要約: 大規模言語モデル(LLM)は、現在、シーケンシャルに新しい記憶を追加し、新しい知識を統合するのに苦労している。
Gated LLM (MEGa) に埋め込まれたメモリは、イベントメモリを直接 LLM の重みに注入する。
推論中、ゲーティング機構は、クエリの埋め込みとストアドメモリの埋め込みとをマッチングすることで、関連するメモリ重みを活性化する。
- 参考スコア(独自算出の注目度): 8.305942415868042
- License:
- Abstract: Large Language Models (LLMs) currently struggle to sequentially add new memories and integrate new knowledge. These limitations contrast with the human ability to continuously learn from new experiences and acquire knowledge throughout life. Most existing approaches add memories either through large context windows or external memory buffers (e.g., Retrieval-Augmented Generation), and studies on knowledge injection rarely test scenarios resembling everyday life events. In this work, we introduce a continual learning framework, Memory Embedded in Gated LLMs (MEGa), which injects event memories directly into the weights of LLMs. Each memory is stored in a dedicated set of gated low-rank weights. During inference, a gating mechanism activates relevant memory weights by matching query embeddings to stored memory embeddings. This enables the model to both recall entire memories and answer related questions. On two datasets - fictional characters and Wikipedia events - MEGa outperforms baseline approaches in mitigating catastrophic forgetting. Our model draws inspiration from the complementary memory system of the human brain.
- Abstract(参考訳): 大規模言語モデル(LLM)は、現在、シーケンシャルに新しい記憶を追加し、新しい知識を統合するのに苦労している。
これらの制限は、新しい経験から継続的に学び、人生を通して知識を得る人間の能力とは対照的である。
既存のほとんどのアプローチは、大きなコンテキストウィンドウまたは外部メモリバッファ(例えばRetrieval-Augmented Generation)を通じてメモリを追加する。
本研究では,LLM の重みに直接イベント記憶を注入する連続学習フレームワーク Memory Embedded in Gated LLMs (MEGa) を導入する。
各メモリは、ゲート付き低ランク重みの専用セットに格納される。
推論中、ゲーティング機構は、クエリの埋め込みとストアドメモリの埋め込みとをマッチングすることで、関連するメモリ重みを活性化する。
これにより、モデルが記憶全体をリコールし、関連する質問に答えることが可能になる。
フィクションのキャラクターとウィキペディアのイベントという2つのデータセットでは、MEGaは破滅的な忘れを緩和するベースラインのアプローチより優れています。
我々のモデルは人間の脳の相補的記憶システムからインスピレーションを得ている。
関連論文リスト
- From Human Memory to AI Memory: A Survey on Memory Mechanisms in the Era of LLMs [34.361000444808454]
メモリは情報をエンコードし、保存し、検索するプロセスである。
大規模言語モデル(LLM)の時代において、メモリとは、AIシステムが過去のインタラクションからの情報を保持し、リコールし、使用し、将来の応答とインタラクションを改善する能力である。
論文 参考訳(メタデータ) (2025-04-22T15:05:04Z) - Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
現在のディープラーニングメモリモデルは、部分的に観察可能で長期にわたる強化学習環境で苦労している。
本稿では,強化学習エージェントのための新しい記憶モデルであるStable Hadamard Memoryを紹介する。
我々の手法は、部分的に観測可能なベンチマークに挑戦する上で、最先端のメモリベースの手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2024-10-14T03:50:17Z) - MADial-Bench: Towards Real-world Evaluation of Memory-Augmented Dialogue Generation [15.64077949677469]
メモリ拡張対話システム(MADS)の有効性を評価するための新しいメモリ拡張対話ベンチマーク(MADail-Bench)を提案する。
このベンチマークは2つのタスクを別々に評価する: メモリ検索とメモリ認識は、パッシブとプロアクティブの両方のメモリリコールデータを組み込んだものである。
このベンチマークにおける最先端の埋め込みモデルと大規模言語モデルの結果は、さらなる進歩の可能性を示している。
論文 参考訳(メタデータ) (2024-09-23T17:38:41Z) - $\text{Memory}^3$: Language Modeling with Explicit Memory [22.572376536612015]
我々は、大言語モデル(LLM)に明示的なメモリ、モデルパラメータよりも安いメモリフォーマット、テキスト検索拡張生成(RAG)を装備する。
予備的な概念実証として, 2.4B LLM をゼロからトレーニングし, より大きな LLM モデルやRAG モデルよりも優れた性能を実現する。
本稿では,知識の外部化を支援するメモリ回路理論を導入し,記憶をトラクタブルにするメモリスペーサー化機構を含む新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-01T11:07:23Z) - WISE: Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models [78.22291694903659]
大規模言語モデル(LLM)は、成長を続ける世界の事実に適合し、幻覚的応答を修正するために知識更新を必要とする。
更新された知識が記憶にどこに存在するかは、モデル編集の基本的な問題である。
記憶のギャップを埋めるためにWISEを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:35:52Z) - MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory [49.96019697955383]
本稿では,構造化および明示的な読み書きメモリモジュールを統合することで,大規模言語モデル(LLM)の拡張手法であるMemLLMを紹介する。
実験の結果, 言語モデリング, 特に知識集約型タスクにおいて, MemLLMはLLMの性能と解釈可能性を向上させることが示唆された。
論文 参考訳(メタデータ) (2024-04-17T18:13:16Z) - Beyond Memorization: The Challenge of Random Memory Access in Language Models [56.525691003233554]
生成言語モデル(LM)がそのメモリに逐次的またはランダムにアクセスできるかどうかを検討する。
本手法により, LMのランダムメモリアクセス性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-03-12T16:42:44Z) - Saliency-Guided Hidden Associative Replay for Continual Learning [13.551181595881326]
継続学習(Continuous Learning)は、人間の学習に似た一連のタスクを通じてニューラルネットワークをトレーニングすることに焦点を当てた、次世代AIの急成長する領域である。
本稿では,継続的学習のためのSaliency Guided Hidden Associative Replayを提案する。
この新しいフレームワークは、アソシエイトメモリをリプレイベースの戦略でシナジする。SHARCは主にスパースメモリエンコーディングを通じて、有能なデータセグメントをアーカイブする。
論文 参考訳(メタデータ) (2023-10-06T15:54:12Z) - Saliency-Augmented Memory Completion for Continual Learning [8.243137410556495]
忘れる方法は、継続的な学習に対処しなければならない問題である。
本稿では,連続学習のための新たなサリエンシ強化メモリ補完フレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-26T18:06:39Z) - LaMemo: Language Modeling with Look-Ahead Memory [50.6248714811912]
右側トークンへの漸進的参加により再帰記憶を向上させるLook-Ahead Memory(LaMemo)を提案する。
LaMemoは、メモリ長に比例した追加のオーバーヘッドで、双方向の注意とセグメントの再発を受け入れる。
広く使われている言語モデリングベンチマークの実験は、異なる種類のメモリを備えたベースラインよりも優れていることを示した。
論文 参考訳(メタデータ) (2022-04-15T06:11:25Z) - Self-Attentive Associative Memory [69.40038844695917]
我々は、個々の体験(記憶)とその発生する関係(関連記憶)の記憶を分離することを提案する。
機械学習タスクの多様性において,提案した2メモリモデルと競合する結果が得られる。
論文 参考訳(メタデータ) (2020-02-10T03:27:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。