論文の概要: Multi-modal Transfer Learning for Dynamic Facial Emotion Recognition in the Wild
- arxiv url: http://arxiv.org/abs/2504.21248v1
- Date: Wed, 30 Apr 2025 01:09:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 22:55:13.104566
- Title: Multi-modal Transfer Learning for Dynamic Facial Emotion Recognition in the Wild
- Title(参考訳): 野生における動的顔表情認識のためのマルチモーダルトランスファー学習
- Authors: Ezra Engel, Lishan Li, Chris Hudy, Robert Schleusner,
- Abstract要約: 顔の表情認識(FER)はコンピュータビジョンのサブセットであり、人間とコンピュータの相互作用、医療、カスタマーサービスに重要な応用がある。
本稿では,ビデオベースFERデータセットの性能向上のために,マルチモーダルトランスファー学習を用いることを検討した。
- 参考スコア(独自算出の注目度): 0.14999444543328289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Facial expression recognition (FER) is a subset of computer vision with important applications for human-computer-interaction, healthcare, and customer service. FER represents a challenging problem-space because accurate classification requires a model to differentiate between subtle changes in facial features. In this paper, we examine the use of multi-modal transfer learning to improve performance on a challenging video-based FER dataset, Dynamic Facial Expression in-the-Wild (DFEW). Using a combination of pretrained ResNets, OpenPose, and OmniVec networks, we explore the impact of cross-temporal, multi-modal features on classification accuracy. Ultimately, we find that these finely-tuned multi-modal feature generators modestly improve accuracy of our transformer-based classification model.
- Abstract(参考訳): 顔の表情認識(FER)はコンピュータビジョンのサブセットであり、人間とコンピュータの相互作用、医療、カスタマーサービスに重要な応用がある。
なぜなら、正確な分類には、顔の特徴の微妙な変化を区別するモデルが必要であるからである。
本稿では,マルチモーダルトランスファー学習を用いて,挑戦的なビデオベースFERデータセットである動的表情表現(DFEW)の性能向上を図る。
事前訓練されたResNets、OpenPose、OmniVecネットワークの組み合わせを用いて、時間的・マルチモーダルな特徴が分類精度に与える影響を探索する。
最終的に、これらの細調整されたマルチモーダル特徴生成器は、変換器に基づく分類モデルの精度を適度に向上させる。
関連論文リスト
- Hyper-Transformer for Amodal Completion [82.4118011026855]
アモーダルオブジェクト補完は、可視セグメントと背景情報に基づいてオブジェクトの見えない部分を予測する複雑なタスクである。
我々はHyper-Transformer Amodal Network(H-TAN)と呼ばれる新しいフレームワークを紹介する。
このフレームワークは、動的畳み込みヘッドを備えたハイパートランスを用いて、形状の事前を直接学習し、アモーダルマスクを正確に予測する。
論文 参考訳(メタデータ) (2024-05-30T11:11:54Z) - CViT: Continuous Vision Transformer for Operator Learning [24.1795082775376]
連続ビジョントランスフォーマー(Continuous Vision Transformer、CViT)は、コンピュータビジョンの進歩を活用して複雑な物理システムを学ぶ際の課題に対処する、新しい神経オペレーターアーキテクチャである。
CViTは、ビジョントランスフォーマーエンコーダ、新しいグリッドベースの座標埋め込み、マルチスケール依存関係を効果的にキャプチャするクエリワイドのクロスアテンション機構を組み合わせたものである。
本研究では, 流体力学, 気候モデル, 反応拡散過程を含む多種多様な偏微分方程式(PDE)システムにおけるCViTの有効性を実証する。
論文 参考訳(メタデータ) (2024-05-22T21:13:23Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - From Static to Dynamic: Adapting Landmark-Aware Image Models for Facial Expression Recognition in Videos [88.08209394979178]
野生における動的表情認識(DFER)は、データ制限によって依然として妨げられている。
抽出された顔のランドマーク認識機能に暗黙的に符号化された既存のSFER知識と動的情報を活用する新しい静的・動的モデル(S2D)を提案する。
論文 参考訳(メタデータ) (2023-12-09T03:16:09Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - Learning Robust Visual-Semantic Embedding for Generalizable Person
Re-identification [11.562980171753162]
一般化可能な人物識別(Re-ID)は、機械学習とコンピュータビジョンにおいて非常にホットな研究トピックである。
従来の手法は主に視覚表現学習に焦点をあてるが、訓練中の意味的特徴の可能性を検討することは無視される。
MMETと呼ばれるマルチモーダル等価変換器を提案し,より堅牢なビジュアル・セマンティックな埋め込み学習を実現する。
論文 参考訳(メタデータ) (2023-04-19T08:37:25Z) - Multimodal Adaptive Fusion of Face and Gait Features using Keyless
attention based Deep Neural Networks for Human Identification [67.64124512185087]
歩行のような軟式生体認証は、人物認識や再識別といった監視作業において顔に広く使われている。
本稿では,キーレス注意深層ニューラルネットワークを活用することで,歩行と顔のバイオメトリック・キューを動的に組み込むための適応型マルチバイオメトリック・フュージョン戦略を提案する。
論文 参考訳(メタデータ) (2023-03-24T05:28:35Z) - Progressive Multi-stage Interactive Training in Mobile Network for
Fine-grained Recognition [8.727216421226814]
再帰型モザイク発電機(RMG-PMSI)を用いたプログレッシブ多段階インタラクティブトレーニング手法を提案する。
まず、異なる位相の異なる画像を生成する再帰モザイク発生器(RMG)を提案する。
次に、異なるステージの特徴は、異なるステージの対応する特徴を強化し補完するマルチステージインタラクション(MSI)モジュールを通過する。
RMG-PMSIは高い堅牢性と伝達性で性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-12-08T10:50:03Z) - A Multi-resolution Approach to Expression Recognition in the Wild [9.118706387430883]
顔認識タスクを解決するためのマルチリゾリューション手法を提案する。
私たちは、しばしば異なる解像度で画像が取得されるという観察を直感的に根拠としています。
我々は、Affect-in-the-Wild 2データセットに基づいてトレーニングされたSqueeze-and-Excitationブロックを備えたResNetのようなアーキテクチャを使用する。
論文 参考訳(メタデータ) (2021-03-09T21:21:02Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
顔の表情の自動認識(FER)の最先端モデルは、非常に深いニューラルネットワークに基づいており、訓練には効果的だがかなり高価である。
私たちは、一般的なディープニューラルネットワークよりもはるかに少ないパラメータを持つ軽量ニューラルネットワークであるFaceChannelを形式化します。
我々は、私たちのモデルがFERの現在の最先端技術に匹敵するパフォーマンスを達成する方法を実証する。
論文 参考訳(メタデータ) (2020-09-15T09:25:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。