論文の概要: Can We Achieve Efficient Diffusion without Self-Attention? Distilling Self-Attention into Convolutions
- arxiv url: http://arxiv.org/abs/2504.21292v1
- Date: Wed, 30 Apr 2025 03:57:28 GMT
- ステータス: 情報取得中
- システム内更新日: 2025-05-02 15:56:14.499879
- Title: Can We Achieve Efficient Diffusion without Self-Attention? Distilling Self-Attention into Convolutions
- Title(参考訳): 自己意識のない効率的な拡散は達成できるか? 自己意識を進化に蒸留する
- Authors: ZiYi Dong, Chengxing Zhou, Weijian Deng, Pengxu Wei, Xiangyang Ji, Liang Lin,
- Abstract要約: 従来の自己アテンションモジュールをピラミッド畳み込みブロック((Delta)ConvBlocks)に置き換えるための(Delta)ConvFusionを提案する。
ローカライズされた畳み込み操作に注意パターンを蒸留し、他のコンポーネントを凍結させながら、(Delta)ConvFusionは、トランスフォーマーベースの処理に匹敵する性能を達成し、計算コストを6929$times$、LinFusionを5.42$times$の効率で上回る。
- 参考スコア(独自算出の注目度): 94.21989689001848
- License:
- Abstract: Contemporary diffusion models built upon U-Net or Diffusion Transformer (DiT) architectures have revolutionized image generation through transformer-based attention mechanisms. The prevailing paradigm has commonly employed self-attention with quadratic computational complexity to handle global spatial relationships in complex images, thereby synthesizing high-fidelity images with coherent visual semantics.Contrary to conventional wisdom, our systematic layer-wise analysis reveals an interesting discrepancy: self-attention in pre-trained diffusion models predominantly exhibits localized attention patterns, closely resembling convolutional inductive biases. This suggests that global interactions in self-attention may be less critical than commonly assumed.Driven by this, we propose \(\Delta\)ConvFusion to replace conventional self-attention modules with Pyramid Convolution Blocks (\(\Delta\)ConvBlocks).By distilling attention patterns into localized convolutional operations while keeping other components frozen, \(\Delta\)ConvFusion achieves performance comparable to transformer-based counterparts while reducing computational cost by 6929$\times$ and surpassing LinFusion by 5.42$\times$ in efficiency--all without compromising generative fidelity.
- Abstract(参考訳): U-Net または Diffusion Transformer (DiT) アーキテクチャ上に構築された同時代の拡散モデルは、トランスフォーマーベースのアテンション機構を通じて画像生成に革命をもたらした。
このパラダイムは、複雑な画像における大域的空間関係を扱うために、2次計算の複雑さを伴う自己アテンションを用いており、それによってコヒーレントな視覚的セマンティクスと高忠実なイメージを合成している。
このことから、従来の自己アテンションモジュールをピラミッド畳み込みブロック (\(\Delta\)ConvBlocks) に置き換えるための \(\Delta\)ConvFusion を提案する。
局所的な畳み込み操作に注意パターンを蒸留し、他のコンポーネントを凍結させたままにすることで、(\Delta\)ConvFusionはトランスフォーマーベースの処理に匹敵する性能を達成し、計算コストを6929$\times$に削減し、LinFusionを5.42$\times$に上回る。
関連論文リスト
- ACDiT: Interpolating Autoregressive Conditional Modeling and Diffusion Transformer [95.80384464922147]
ACDiTはブロックワイド条件拡散変換器である。
トークン単位の自己回帰とフルシーケンス拡散のフレキシブルな関係を提供する。
本稿では,映像生成タスクにおける自己回帰ベースラインの中で,ACDiTが最良であることを示す。
論文 参考訳(メタデータ) (2024-12-10T18:13:20Z) - Efficient Diffusion Transformer with Step-wise Dynamic Attention Mediators [83.48423407316713]
本稿では,クエリとキーを別々に扱うために,追加の仲介者トークンを組み込んだ新しい拡散トランスフォーマーフレームワークを提案する。
本モデルでは, 正確な非曖昧な段階を呈し, 詳細に富んだ段階へと徐々に遷移する。
本手法は,最近のSiTと統合した場合に,最先端のFIDスコア2.01を達成する。
論文 参考訳(メタデータ) (2024-08-11T07:01:39Z) - Multi-Context Dual Hyper-Prior Neural Image Compression [10.349258638494137]
入力画像から局所的情報と大域的情報の両方を効率的にキャプチャするトランスフォーマーに基づく非線形変換を提案する。
また、2つの異なるハイパープライヤを組み込んだ新しいエントロピーモデルを導入し、潜在表現のチャネル間および空間的依存関係をモデル化する。
実験の結果,提案するフレームワークは,速度歪み性能の観点から,最先端の手法よりも優れた性能を示すことがわかった。
論文 参考訳(メタデータ) (2023-09-19T17:44:44Z) - TGFuse: An Infrared and Visible Image Fusion Approach Based on
Transformer and Generative Adversarial Network [15.541268697843037]
本稿では,軽量トランスモジュールと対向学習に基づく赤外可視画像融合アルゴリズムを提案する。
大域的相互作用力にインスパイアされた我々は、トランスフォーマー技術を用いて、効果的な大域的核融合関係を学習する。
実験により提案したモジュールの有効性が実証された。
論文 参考訳(メタデータ) (2022-01-25T07:43:30Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Improved Transformer for High-Resolution GANs [69.42469272015481]
この課題に対処するために、Transformerに2つの重要な要素を紹介します。
実験で提案したHiTは、条件のないImageNetの31.87と2.95のFIDスコアをそれぞれ128×128$とFFHQの256×256$で達成していることを示す。
論文 参考訳(メタデータ) (2021-06-14T17:39:49Z) - X-volution: On the unification of convolution and self-attention [52.80459687846842]
本稿では,畳み込み操作と自己注意操作の両方からなるマルチブランチ基本モジュールを提案する。
提案したX-進化は、非常に競争力のある視覚的理解の改善を実現する。
論文 参考訳(メタデータ) (2021-06-04T04:32:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。