On the Encapsulation of Medical Imaging AI Algorithms
- URL: http://arxiv.org/abs/2504.21412v1
- Date: Wed, 30 Apr 2025 08:12:09 GMT
- Title: On the Encapsulation of Medical Imaging AI Algorithms
- Authors: Hans Meine, Yongli Mou, Guido Prause, Horst Hahn,
- Abstract summary: This paper focuses on interoperability and (re)usability of medical imaging AI algorithms.<n>It refers to the FAIR principles for research data, where this paper focuses on interoperability and (re)usability of medical imaging AI algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the context of collaborative AI research and development projects, it would be ideal to have self-contained encapsulated algorithms that can be easily shared between different parties, executed and validated on data at different sites, or trained in a federated manner. In practice, all of this is possible but greatly complicated, because human supervision and expert knowledge is needed to set up the execution of algorithms based on their documentation, possibly implicit assumptions, and knowledge about the execution environment and data involved. We derive and formulate a range of detailed requirements from the above goal and from specific use cases, focusing on medical imaging AI algorithms. Furthermore, we refer to a number of existing APIs and implementations and review which aspects each of them addresses, which problems are still open, and which public standards and ontologies may be relevant. Our contribution is a comprehensive collection of aspects that have not yet been addressed in their entirety by any single solution. Working towards the formulated goals should lead to more sustainable algorithm ecosystems and relates to the FAIR principles for research data, where this paper focuses on interoperability and (re)usability of medical imaging AI algorithms.
Related papers
- STORM: Strategic Orchestration of Modalities for Rare Event Classification [5.691753509745111]
We introduce an entropy-based algorithm to solve the modality selection problem for rare event.<n>By selecting useful subset of modalities, our approach paves the way for more efficient AI-driven biomedical analyses.
arXiv Detail & Related papers (2024-12-03T20:17:39Z) - AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias [2.398440840890111]
AI applications have significantly improved diagnostic accuracy, treatment personalization, and patient outcome predictions.
These advancements also introduce substantial ethical and fairness challenges.
These biases can lead to disparities in healthcare delivery, affecting diagnostic accuracy and treatment outcomes across different demographic groups.
arXiv Detail & Related papers (2024-07-29T02:39:17Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
Underwater image enhancement (UIE) presents a significant challenge within computer vision research.
Despite the development of numerous UIE algorithms, a thorough and systematic review is still absent.
arXiv Detail & Related papers (2024-05-30T04:46:40Z) - Balancing Privacy and Progress in Artificial Intelligence: Anonymization
in Histopathology for Biomedical Research and Education [1.8078387709049526]
Transferring medical data "as open as possible" poses a risk to patient privacy.
Existing regulations push towards keeping medical data "as closed as necessary" to avoid re-identification risks.
This paper explores the legal regulations and terminologies for medical data-sharing.
arXiv Detail & Related papers (2023-07-18T16:53:07Z) - A Gold Standard Dataset for the Reviewer Assignment Problem [117.59690218507565]
"Similarity score" is a numerical estimate of the expertise of a reviewer in reviewing a paper.
Our dataset consists of 477 self-reported expertise scores provided by 58 researchers.
For the task of ordering two papers in terms of their relevance for a reviewer, the error rates range from 12%-30% in easy cases to 36%-43% in hard cases.
arXiv Detail & Related papers (2023-03-23T16:15:03Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Generalization of Artificial Intelligence Models in Medical Imaging: A
Case-Based Review [0.0]
It is important for practicing radiologists to understand the pitfalls of various AI algorithms.
Use of AI should be preceded by a fundamental understanding of the risks and benefits to those it is intended to help.
arXiv Detail & Related papers (2022-11-15T10:09:51Z) - Deep Algorithm Unrolling for Biomedical Imaging [99.73317152134028]
In this chapter, we review biomedical applications and breakthroughs via leveraging algorithm unrolling.
We trace the origin of algorithm unrolling and provide a comprehensive tutorial on how to unroll iterative algorithms into deep networks.
We conclude the chapter by discussing open challenges, and suggesting future research directions.
arXiv Detail & Related papers (2021-08-15T01:06:26Z) - A Field Guide to Federated Optimization [161.3779046812383]
Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data.
This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms.
arXiv Detail & Related papers (2021-07-14T18:09:08Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.