Towards proactive self-adaptive AI for non-stationary environments with dataset shifts
- URL: http://arxiv.org/abs/2504.21565v1
- Date: Wed, 30 Apr 2025 12:09:59 GMT
- Title: Towards proactive self-adaptive AI for non-stationary environments with dataset shifts
- Authors: David Fernández Narro, Pablo Ferri, Juan M. García-Gómez, Carlos Sáez,
- Abstract summary: We propose a proactive self-adaptive AI approach, where we model the temporal and trajectory of AI parameters.<n>This work lays the foundation for pro-adaptive AI research against dynamic, non-stationary environments.
- Score: 1.1045045527359925
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial Intelligence (AI) models deployed in production frequently face challenges in maintaining their performance in non-stationary environments. This issue is particularly noticeable in medical settings, where temporal dataset shifts often occur. These shifts arise when the distributions of training data differ from those of the data encountered during deployment over time. Further, new labeled data to continuously retrain AI is not typically available in a timely manner due to data access limitations. To address these challenges, we propose a proactive self-adaptive AI approach, or pro-adaptive, where we model the temporal trajectory of AI parameters, allowing us to short-term forecast parameter values. To this end, we use polynomial spline bases, within an extensible Functional Data Analysis framework. We validate our methodology with a logistic regression model addressing prior probability shift, covariate shift, and concept shift. This validation is conducted on both a controlled simulated dataset and a publicly available real-world COVID-19 dataset from Mexico, with various shifts occurring between 2020 and 2024. Our results indicate that this approach enhances the performance of AI against shifts compared to baseline stable models trained at different time distances from the present, without requiring updated training data. This work lays the foundation for pro-adaptive AI research against dynamic, non-stationary environments, being compatible with data protection, in resilient AI production environments for health.
Related papers
- Inverse Reinforcement Learning for Minimum-Exposure Paths in Spatiotemporally Varying Scalar Fields [49.1574468325115]
We consider a problem of synthesizing datasets of minimum exposure paths that resemble a training dataset of such paths.<n>The main contribution of this paper is an inverse reinforcement learning (IRL) model to solve this problem.<n>We find that the proposed IRL model provides excellent performance in synthesizing paths from initial conditions not seen in the training dataset.
arXiv Detail & Related papers (2025-03-09T13:30:11Z) - CAAT-EHR: Cross-Attentional Autoregressive Transformer for Multimodal Electronic Health Record Embeddings [0.0]
We introduce CAAT-EHR, a novel architecture designed to generate task-agnostic longitudinal embeddings from raw EHR data.<n>An autoregressive decoder complements the encoder by predicting future time points data during pre-training, ensuring that the resulting embeddings maintain temporal consistency and alignment.
arXiv Detail & Related papers (2025-01-31T05:00:02Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Stochastic Gradient Descent with Adaptive Data [4.119418481809095]
gradient descent (SGD) is a powerful optimization technique that is particularly useful in online learning scenarios.
Applying SGD to policy optimization problems in operations research involves a distinct challenge: the policy changes the environment and thereby affects the data used to update the policy.
The influence of previous decisions on the data generated introduces bias in the gradient estimate, which presents a potential source of instability for online learning not present in the iid case.
We show that the convergence speed of SGD with adaptive data is largely similar to the classical iid setting, as long as the mixing time of the policy-induced dynamics is factored in.
arXiv Detail & Related papers (2024-10-02T02:58:32Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Online Performance Estimation with Unlabeled Data: A Bayesian Application of the Hui-Walter Paradigm [0.0]
We adapt the Hui-Walter paradigm, a method traditionally applied in epidemiology and medicine, to the field of machine learning.
We estimate key performance metrics such as false positive rate, false negative rate, and priors in scenarios where no ground truth is available.
We extend this paradigm for handling online data, opening up new possibilities for dynamic data environments.
arXiv Detail & Related papers (2024-01-17T17:46:10Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
This paper presents an optimal strategy for streaming contexts with limited labeled data, introducing an adaptive technique for unsupervised regression.
The proposed method leverages a sparse set of initial labels and introduces an innovative drift detection mechanism.
To enhance adaptability, we integrate the ADWIN (ADaptive WINdowing) algorithm with error generalization based on Root Mean Square Error (RMSE)
arXiv Detail & Related papers (2023-12-12T19:23:54Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Fully Embedded Time-Series Generative Adversarial Networks [0.0]
Generative Adversarial Networks (GANs) should produce synthetic data that fits the underlying distribution of the data being modeled.
For real valued time-series data, this implies the need to simultaneously capture the static distribution of the data, but also the full temporal distribution of the data for any potential time horizon.
In FETSGAN, entire sequences are translated directly to the generator's sampling space using a seq2seq style adversarial auto encoder (AAE)
arXiv Detail & Related papers (2023-08-30T03:14:02Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.