Skin Effect Induced Anomalous Dynamics from Charge-Fluctuating Initial States
- URL: http://arxiv.org/abs/2504.21631v1
- Date: Wed, 30 Apr 2025 13:33:10 GMT
- Title: Skin Effect Induced Anomalous Dynamics from Charge-Fluctuating Initial States
- Authors: Sibo Guo, Shuai Yin, Shi-Xin Zhang, Zi-Xiang Li,
- Abstract summary: We study non-reciprocal quench dynamics in the pairing states with indefinite particle number.<n>We find that non-Hermiticity could enhance the growth of entanglement in the initial stages of evolution.<n>Our results reveal the presence of the quantum Mpemba effect during the restoration of U(1) symmetry.
- Score: 2.54990557236581
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-equilibrium dynamics in non-Hermitian systems has attracted significant interest, particularly due to the skin effect and its associated anomalous phenomena. Previous studies have primarily focused on initial states with a definite particle number. Here, we present a systematic study of non-reciprocal quench dynamics in the pairing states with indefinite particle number. Our study uncovers a range of novel behaviors. Firstly, we demonstrate a universal tendency towards half-filling of particle density at late times. At early times for certain initial states, we observe a chiral wavefront in both particle number distribution and charge inflow, associated with a sharp decrease in particle number. Furthermore, we find that non-Hermiticity could enhance the growth of entanglement in the initial stages of evolution. In the intermediate time regime, the characteristic skin effect leads to particle accumulation on one side, leading to a pronounced reduction in entanglement entropy. Moreover, our results reveal the presence of the quantum Mpemba effect during the restoration of U(1) symmetry. Our findings open new avenues for exploring exotic dynamic phenomena in quantum many-body systems arising from the interplay of symmetry breaking and non-Hermiticity.
Related papers
- Dynamics of Topological Defects in a Rashba Spin-Orbit Coupled Bose-Einstein Condensate [14.50864620620941]
We investigate the quench dynamics of a two-dimensional Rashba spin-orbit coupled Bose-Einstein condensate.<n>During this quench, topological defects emerge in the form of vortices.
arXiv Detail & Related papers (2024-12-25T09:31:42Z) - Non-Hermitian Effects in Dicke models [18.25522741939446]
We study the manifestation of non-Hermitian effects in the Dicke model of light-matter interaction.
Our findings deepen the understanding of non-Hermitian physics in light-matter interaction.
arXiv Detail & Related papers (2024-11-13T06:30:10Z) - Quenching from superfluid to free bosons in two dimensions: entanglement, symmetries, and quantum Mpemba effect [0.0]
We study the non-equilibrium dynamics of bosons in a two-dimensional optical lattice after a sudden quench from the superfluid phase to the free-boson regime.
arXiv Detail & Related papers (2024-10-18T09:00:01Z) - The quantum Mpemba effect in free-fermionic mixed states [0.0]
In certain scenarios, greater initial symmetry breaking leads to faster restoration, akin to a quantum Mpemba effect.<n>This study focuses on investigating the effect of mixed initial states and non-unitary dynamics on symmetry restoration.
arXiv Detail & Related papers (2024-05-14T19:07:25Z) - Partial confinement in a quantum-link simulator [25.949731736282295]
We show that the spin-1 quantum link model provides an excellent platform for exploring partial confinement.
We conduct a comprehensive investigation of the physics emerging from partial confinement in both the context of equilibrium and non-equilibrium dynamics.
Our work offers a simple and feasible routine for the study of confinement-related physics in the state-of-the-art artificial quantum systems.
arXiv Detail & Related papers (2024-04-28T06:55:08Z) - Quantum quenches from an excited state [0.0]
We extend the theory of quantum quenches to the case in which before the quench the system is in an excited state.
Oscillations staying undamped within the accessible time interval, far beyond the perturbative time scale, are nowadays observed in numerical simulations.
arXiv Detail & Related papers (2023-04-05T09:12:44Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Entanglement Phase Transition Induced by the Non-Hermitian Skin Effect [0.0]
We show that the skin effect induces a nonequilibrium quantum phase transition in the entanglement dynamics.
We also show that the skin effect leads to the purification and the reduction of von Neumann entropy even in Markovian open quantum systems.
arXiv Detail & Related papers (2022-06-11T00:27:36Z) - Fate of entanglement in one-dimensional fermion liquid with coherent
particle loss [2.5081221761654757]
We study the dynamic properties of a one-dimensional fermionic system with adjacent-lattice particle loss.
Our findings provide valuable insights for near-term quantum devices and the quantum simulation of open systems.
arXiv Detail & Related papers (2021-12-27T07:24:33Z) - Persistent Current of SU(N) Fermions [0.0]
We study the persistent current in a system of SU($N$) fermions with repulsive interaction confined in a ring-shaped potential.
We show that the persistent current depends on the number of spin components $N$, number of particles and interaction in a specific way that in certain physical regimes has universality traits.
arXiv Detail & Related papers (2020-11-02T11:53:06Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.