Investigating the Effect of Parallel Data in the Cross-Lingual Transfer for Vision-Language Encoders
- URL: http://arxiv.org/abs/2504.21681v1
- Date: Wed, 30 Apr 2025 14:19:15 GMT
- Title: Investigating the Effect of Parallel Data in the Cross-Lingual Transfer for Vision-Language Encoders
- Authors: Andrei-Alexandru Manea, Jindřich Libovický,
- Abstract summary: Most pre-trained Vision-Language (VL) models and training data for the downstream tasks are only available in English.<n>We study the alternative approach: transferring an already trained encoder using parallel data.<n>Our results show that even machine-translated task data are the best on average, caption-like authentic parallel data outperformed it in some languages.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most pre-trained Vision-Language (VL) models and training data for the downstream tasks are only available in English. Therefore, multilingual VL tasks are solved using cross-lingual transfer: fine-tune a multilingual pre-trained model or transfer the text encoder using parallel data. We study the alternative approach: transferring an already trained encoder using parallel data. We investigate the effect of parallel data: domain and the number of languages, which were out of focus in previous work. Our results show that even machine-translated task data are the best on average, caption-like authentic parallel data outperformed it in some languages. Further, we show that most languages benefit from multilingual training.
Related papers
- Self-Augmentation Improves Zero-Shot Cross-Lingual Transfer [92.80671770992572]
Cross-lingual transfer is a central task in multilingual NLP.
Earlier efforts on this task use parallel corpora, bilingual dictionaries, or other annotated alignment data.
We propose a simple yet effective method, SALT, to improve the zero-shot cross-lingual transfer.
arXiv Detail & Related papers (2023-09-19T19:30:56Z) - PEACH: Pre-Training Sequence-to-Sequence Multilingual Models for
Translation with Semi-Supervised Pseudo-Parallel Document Generation [5.004814662623874]
This paper introduces a novel semi-supervised method, SPDG, that generates high-quality pseudo-parallel data for multilingual pre-training.
Our experiments show that PEACH outperforms existing approaches used in training mT5 and mBART on various translation tasks.
arXiv Detail & Related papers (2023-04-03T18:19:26Z) - On the Role of Parallel Data in Cross-lingual Transfer Learning [30.737717433111776]
We examine the usage of unsupervised machine translation to generate synthetic parallel data.
We find that even model generated parallel data can be useful for downstream tasks.
Our findings suggest that existing multilingual models do not exploit the full potential of monolingual data.
arXiv Detail & Related papers (2022-12-20T11:23:04Z) - Language Agnostic Multilingual Information Retrieval with Contrastive
Learning [59.26316111760971]
We present an effective method to train multilingual information retrieval systems.
We leverage parallel and non-parallel corpora to improve the pretrained multilingual language models.
Our model can work well even with a small number of parallel sentences.
arXiv Detail & Related papers (2022-10-12T23:53:50Z) - Bridging Cross-Lingual Gaps During Leveraging the Multilingual
Sequence-to-Sequence Pretraining for Text Generation [80.16548523140025]
We extend the vanilla pretrain-finetune pipeline with extra code-switching restore task to bridge the gap between the pretrain and finetune stages.
Our approach could narrow the cross-lingual sentence representation distance and improve low-frequency word translation with trivial computational cost.
arXiv Detail & Related papers (2022-04-16T16:08:38Z) - Cross-lingual Intermediate Fine-tuning improves Dialogue State Tracking [84.50302759362698]
We enhance the transfer learning process by intermediate fine-tuning of pretrained multilingual models.
We use parallel and conversational movie subtitles datasets to design cross-lingual intermediate tasks.
We achieve impressive improvements (> 20% on goal accuracy) on the parallel MultiWoZ dataset and Multilingual WoZ dataset.
arXiv Detail & Related papers (2021-09-28T11:22:38Z) - Multilingual Neural Semantic Parsing for Low-Resourced Languages [1.6244541005112747]
We introduce a new multilingual semantic parsing dataset in English, Italian and Japanese.
We show that joint multilingual training with pretrained encoders substantially outperforms our baselines on the TOP dataset.
We find that a semantic trained only on English data achieves a zero-shot performance of 44.9% exact-match accuracy on Italian sentences.
arXiv Detail & Related papers (2021-06-07T09:53:02Z) - Word Alignment by Fine-tuning Embeddings on Parallel Corpora [96.28608163701055]
Word alignment over parallel corpora has a wide variety of applications, including learning translation lexicons, cross-lingual transfer of language processing tools, and automatic evaluation or analysis of translation outputs.
Recently, other work has demonstrated that pre-trained contextualized word embeddings derived from multilingually trained language models (LMs) prove an attractive alternative, achieving competitive results on the word alignment task even in the absence of explicit training on parallel data.
In this paper, we examine methods to marry the two approaches: leveraging pre-trained LMs but fine-tuning them on parallel text with objectives designed to improve alignment quality, and proposing
arXiv Detail & Related papers (2021-01-20T17:54:47Z) - XLM-T: Scaling up Multilingual Machine Translation with Pretrained
Cross-lingual Transformer Encoders [89.0059978016914]
We present XLM-T, which initializes the model with an off-the-shelf pretrained cross-lingual Transformer and fine-tunes it with multilingual parallel data.
This simple method achieves significant improvements on a WMT dataset with 10 language pairs and the OPUS-100 corpus with 94 pairs.
arXiv Detail & Related papers (2020-12-31T11:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.