論文の概要: Is Intermediate Fusion All You Need for UAV-based Collaborative Perception?
- arxiv url: http://arxiv.org/abs/2504.21774v1
- Date: Wed, 30 Apr 2025 16:22:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 17:47:33.540466
- Title: Is Intermediate Fusion All You Need for UAV-based Collaborative Perception?
- Title(参考訳): 中間核融合はUAVによる協調知覚に必要か?
- Authors: Jiuwu Hao, Liguo Sun, Yuting Wan, Yueyang Wu, Ti Xiang, Haolin Song, Pin Lv,
- Abstract要約: 本稿では, LIF と呼ばれる, 遠隔期融合に基づくコミュニケーション効率の高い協調認識フレームワークを提案する。
視覚誘導型位置埋め込み(VPE)とボックスベースの仮想拡張機能(BoBEV)を活用し,様々なエージェントからの補完情報を効果的に統合する。
実験結果から,通信帯域を最小化して通信性能を向上し,その有効性と実用性を実証した。
- 参考スコア(独自算出の注目度): 1.8689461238197957
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collaborative perception enhances environmental awareness through inter-agent communication and is regarded as a promising solution to intelligent transportation systems. However, existing collaborative methods for Unmanned Aerial Vehicles (UAVs) overlook the unique characteristics of the UAV perspective, resulting in substantial communication overhead. To address this issue, we propose a novel communication-efficient collaborative perception framework based on late-intermediate fusion, dubbed LIF. The core concept is to exchange informative and compact detection results and shift the fusion stage to the feature representation level. In particular, we leverage vision-guided positional embedding (VPE) and box-based virtual augmented feature (BoBEV) to effectively integrate complementary information from various agents. Additionally, we innovatively introduce an uncertainty-driven communication mechanism that uses uncertainty evaluation to select high-quality and reliable shared areas. Experimental results demonstrate that our LIF achieves superior performance with minimal communication bandwidth, proving its effectiveness and practicality. Code and models are available at https://github.com/uestchjw/LIF.
- Abstract(参考訳): 協調的な認識は、エージェント間コミュニケーションを通じて環境意識を高め、インテリジェントな交通システムに対する有望な解決策と見なされている。
しかし、既存の無人航空機(UAV)の協力的手法は、UAVの視点のユニークな特徴を見落とし、かなりの通信オーバーヘッドをもたらす。
この問題に対処するために,通信効率のよい協調認識フレームワーク LIF を提案する。
中心となる概念は、情報的かつコンパクトな検出結果を交換し、融合ステージを特徴表現レベルにシフトさせることである。
特に、視覚誘導位置埋め込み(VPE)とボックスベースの仮想拡張現実(BoBEV)を活用し、様々なエージェントからの補完情報を効果的に統合する。
さらに、不確実性評価を用いて高品質で信頼性の高い共有領域を選択する不確実性駆動型通信機構を革新的に導入する。
実験結果から,通信帯域を最小化して通信性能を向上し,その有効性と実用性を実証した。
コードとモデルはhttps://github.com/uestchjw/LIFで公開されている。
関連論文リスト
- CoCMT: Communication-Efficient Cross-Modal Transformer for Collaborative Perception [14.619784179608361]
マルチエージェント協調知覚は、ロボット知覚タスクを協調的に行うために、知覚情報を共有することによって、各エージェントの能力を高める。
既存の代表的な協調認識システムは、大量の非臨界情報を含む中間特徴写像を伝達する。
本稿では,オブジェクトクエリをベースとした協調フレームワークであるCoCMTを紹介し,重要な特徴を選択的に抽出し伝達することによって,通信帯域幅を最大化する。
論文 参考訳(メタデータ) (2025-03-13T06:41:25Z) - CoSDH: Communication-Efficient Collaborative Perception via Supply-Demand Awareness and Intermediate-Late Hybridization [23.958663737034318]
本稿では,供給需要の認識と中間段階のハイブリダイゼーションに基づく,コミュニケーション効率の高い協調認識フレームワークを提案する。
シミュレーションと実世界のシナリオを含む複数のデータセットの実験は、mymethodnameが最先端の検出精度と最適な帯域幅のトレードオフを達成することを実証している。
論文 参考訳(メタデータ) (2025-03-05T12:02:04Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - V2X-PC: Vehicle-to-everything Collaborative Perception via Point Cluster [58.79477191603844]
我々は,低レベル構造情報と高レベル意味情報を組み合わせて,シーンを疎結合に表現する新しいメッセージユニット,すなわちポイントクラスタを導入する。
このフレームワークには、オブジェクトの機能を維持し、帯域幅を管理するためのポイントクラスタパッキング(PCP)モジュールが含まれている。
2つの広く認識されている協調認識ベンチマークの実験は、従来の最先端の手法と比較して、我々の手法の優れた性能を示している。
論文 参考訳(メタデータ) (2024-03-25T11:24:02Z) - What Makes Good Collaborative Views? Contrastive Mutual Information Maximization for Multi-Agent Perception [52.41695608928129]
マルチエージェント認識(MAP)は、複数のソースからのデータを解釈することで、自律システムが複雑な環境を理解することを可能にする。
本稿では,MAPにおける協調的視点の「良い」特性を探求することに焦点を当てた中間的協調について検討する。
中間コラボレーションのための新しいフレームワークCMiMCを提案する。
論文 参考訳(メタデータ) (2024-03-15T07:18:55Z) - Towards Full-scene Domain Generalization in Multi-agent Collaborative Bird's Eye View Segmentation for Connected and Autonomous Driving [49.03947018718156]
協調的な知覚の訓練と推論の段階で利用される統合されたドメイン一般化フレームワークを提案する。
また、システム内ドメインアライメント機構を導入し、コネクテッドおよび自律走行車間のドメインの差を減らし、潜在的に排除する。
論文 参考訳(メタデータ) (2023-11-28T12:52:49Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - Attention Based Feature Fusion For Multi-Agent Collaborative Perception [4.120288148198388]
グラフアテンションネットワーク(GAT)の形での中間的協調認識ソリューションを提案する。
提案手法は,複数の連結エージェント間で交換される中間表現を融合するアテンションベースのアグリゲーション戦略を開発する。
このアプローチは、チャネルレベルと空間レベルの中間特徴写像における重要な領域を適応的に強調することにより、オブジェクト検出精度が向上する。
論文 参考訳(メタデータ) (2023-05-03T12:06:11Z) - Learning to Communicate and Correct Pose Errors [75.03747122616605]
本稿では、V2VNetで提案された設定について検討し、近くにある自動運転車が共同で物体検出と動き予測を協調的に行う方法を提案する。
本稿では,コミュニケーションを学習し,潜在的な誤りを推定し,それらの誤りについてコンセンサスを得るための新しいニューラルネットワーク推論フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-10T18:19:40Z) - Bandwidth-Adaptive Feature Sharing for Cooperative LIDAR Object
Detection [2.064612766965483]
コネクテッド・自動運転車(CAV)領域で必要となる状況認識。
協調機構は、高速無線車載ネットワークを利用して状況認識を改善するソリューションを提供する。
本稿では,通信チャネル容量に適応する柔軟性を付加する機構と,新たな分散共有データアライメント手法を提案する。
論文 参考訳(メタデータ) (2020-10-22T00:12:58Z) - Cooperative LIDAR Object Detection via Feature Sharing in Deep Networks [11.737037965090535]
協調物体検出(FS-COD)のための特徴共有の概念を導入する。
提案手法では, 協調車両間で部分的に処理されたデータを共有することにより, 環境の理解を深める。
提案手法は,従来の単車車物体検出手法よりも性能に優れていた。
論文 参考訳(メタデータ) (2020-02-19T20:47:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。