論文の概要: A simple and effective approach for body part recognition on CT scans based on projection estimation
- arxiv url: http://arxiv.org/abs/2504.21810v1
- Date: Wed, 30 Apr 2025 17:13:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 17:40:37.400202
- Title: A simple and effective approach for body part recognition on CT scans based on projection estimation
- Title(参考訳): 予測推定に基づくCTスキャンにおける身体部分認識の簡便かつ効果的なアプローチ
- Authors: Franko Hrzic, Mohammadreza Movahhedi, Ophelie Lavoie-Gagne, Ata Kiapour,
- Abstract要約: 本研究は, 身体領域同定のための3次元CTスキャンの2次元X線的推定に基づく, 単純かつ効果的なアプローチを提案する。
提案手法では,14個の異なる身体領域を識別するために推定された2次元画像を用いて,高品質な医療データセットの構築に有用な情報を提供する。
- 参考スコア(独自算出の注目度): 3.5436187733613087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is well known that machine learning models require a high amount of annotated data to obtain optimal performance. Labelling Computed Tomography (CT) data can be a particularly challenging task due to its volumetric nature and often missing and$/$or incomplete associated meta-data. Even inspecting one CT scan requires additional computer software, or in the case of programming languages $-$ additional programming libraries. This study proposes a simple, yet effective approach based on 2D X-ray-like estimation of 3D CT scans for body region identification. Although body region is commonly associated with the CT scan, it often describes only the focused major body region neglecting other anatomical regions present in the observed CT. In the proposed approach, estimated 2D images were utilized to identify 14 distinct body regions, providing valuable information for constructing a high-quality medical dataset. To evaluate the effectiveness of the proposed method, it was compared against 2.5D, 3D and foundation model (MI2) based approaches. Our approach outperformed the others, where it came on top with statistical significance and F1-Score for the best-performing model EffNet-B0 of 0.980 $\pm$ 0.016 in comparison to the 0.840 $\pm$ 0.114 (2.5D DenseNet-161), 0.854 $\pm$ 0.096 (3D VoxCNN), and 0.852 $\pm$ 0.104 (MI2 foundation model). The utilized dataset comprised three different clinical centers and counted 15,622 CT scans (44,135 labels).
- Abstract(参考訳): 機械学習モデルは最適な性能を得るために大量の注釈付きデータを必要とすることはよく知られている。
CT(Computerd Tomography)データのラベリングは、そのボリュームの性質と、しばしば欠落していることと、それに関連するメタデータが$/$または$$$であるため、特に難しい作業である。
1つのCTスキャンを検査する場合でも、追加のコンピュータソフトウェア、あるいはプログラミング言語の場合、$-$追加のプログラムライブラリが必要になる。
本研究は, 身体領域同定のための3次元CTスキャンの2次元X線的推定に基づく, 単純かつ効果的なアプローチを提案する。
全身領域はCTスキャンと一般的に関連があるが、観察されたCTに存在する他の解剖学的領域を無視する集中した大体領域のみを記述することが多い。
提案手法では,14個の異なる身体領域を識別するために推定された2次元画像を用いて,高品質な医療データセットの構築に有用な情報を提供する。
提案手法の有効性を評価するため, 2.5D, 3D, 基礎モデル (MI2) を用いた手法との比較を行った。
EffNet-B0 of 0.980 $\pm$ 0.016, 0.840 $\pm$ 0.114 (2.5D DenseNet-161), 0.854 $\pm$ 0.096 (3D VoxCNN), 0.852 $\pm$ 0.104 (MI2 ファンデーションモデル) と比較すると, 当社のアプローチは, 統計的重要性とF1-Scoreを最上位で上回りました。
利用したデータセットは3つの異なる臨床センターから構成され、15,622個のCTスキャン(44,135個のラベル)を数えた。
関連論文リスト
- Medical Slice Transformer: Improved Diagnosis and Explainability on 3D Medical Images with DINOv2 [1.6275928583134276]
医用スライストランスフォーマー(MST)フレームワークを導入し,3次元医用画像解析に2次元自己監督モデルを適用した。
MSTは畳み込みニューラルネットワークと比較して、診断精度と説明性の向上を提供する。
論文 参考訳(メタデータ) (2024-11-24T12:11:11Z) - Towards a Holistic Framework for Multimodal Large Language Models in Three-dimensional Brain CT Report Generation [42.06416052431378]
2Dラジオグラフィーキャプションは、ボリューム3D解剖学における現実の診断課題を反映するものではない。
我々は18,885組の3D-BrainCTデータセットを収集し,臨床ビジュアルインストラクション・チューニングを用いて,脳波モデルを用いて放射線治療を施した3D脳CTレポートを作成した。
私たちの研究は、3Dの脳CTデータセットのキュレーション、微調整による解剖学的意味のある言語モデル、堅牢な放射線学評価指標の提案など、総合的な枠組みを具現化したものです。
論文 参考訳(メタデータ) (2024-07-02T12:58:35Z) - CT-GLIP: 3D Grounded Language-Image Pretraining with CT Scans and Radiology Reports for Full-Body Scenarios [53.94122089629544]
我々は,CT-GLIP(Grounded Language- Image Pretraining with CT scans)を導入する。
本手法は,104臓器にわたる17,702症例を対象に,44,011例の臓器レベルの視覚テキストペアからなるマルチモーダルCTデータセットを用いて訓練し,自然言語を用いて臓器と異常をゼロショットで識別できることを実証した。
論文 参考訳(メタデータ) (2024-04-23T17:59:01Z) - A Closer Look at Spatial-Slice Features Learning for COVID-19 Detection [8.215897530386343]
我々は,CTスキャンに特化して設計されたSpatial-Slice Feature Learning (SSFL++) フレームワークを提案する。
本研究の目的は,全CTスキャンでOODデータをフィルタリングし,70%の冗長性を完全に低減し,解析のための重要な空間スライスを選択することである。
実験では、トレーニングデータの1%しか持たない単純なE2D(EfficientNet-2D)モデルを用いて、我々のモデルの有望な性能を実証した。
論文 参考訳(メタデータ) (2024-04-02T05:19:27Z) - CT Perfusion is All We Need: 4D CNN Segmentation of Penumbra and Core in
Patients With Suspected Ischemic Stroke [1.6836876499886009]
本稿では,時間情報を完全に活用する4つの畳み込みを入力として利用する方法について検討する。
提案した4D mJ-Netを用いることで、ペニブラとコア領域の分割にそれぞれ0.53と0.23のDice係数が得られる。
論文 参考訳(メタデータ) (2023-03-15T16:53:19Z) - COVIDx CT-3: A Large-scale, Multinational, Open-Source Benchmark Dataset
for Computer-aided COVID-19 Screening from Chest CT Images [82.74877848011798]
胸部CT画像から新型コロナウイルスの症例を検出するための大規模ベンチマークデータセットであるCOVIDx CT-3を紹介する。
COVIDx CT-3には、少なくとも17カ国で6,068人の患者から431,205個のCTスライスが含まれている。
我々は, COVIDx CT-3データセットのデータ多様性と潜在的なバイアスについて検討し, 地理的, 集団的不均衡について検討した。
論文 参考訳(メタデータ) (2022-06-07T06:35:48Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - COVID-19 identification from volumetric chest CT scans using a
progressively resized 3D-CNN incorporating segmentation, augmentation, and
class-rebalancing [4.446085353384894]
新型コロナウイルスは世界的なパンデミックの流行だ。
高い感度のコンピュータ支援スクリーニングツールは、疾患の診断と予後に不可欠である。
本稿では,3次元畳み込みニューラルネットワーク(CNN)に基づく分類手法を提案する。
論文 参考訳(メタデータ) (2021-02-11T18:16:18Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - Deep Reinforcement Learning for Organ Localization in CT [59.23083161858951]
我々はCTにおける臓器局所化のための深層強化学習手法を提案する。
この研究において、人工エージェントは、その主張や誤りから学習することで、CT内の臓器の局所化を積極的に行う。
本手法は,任意の臓器をローカライズするためのプラグイン・アンド・プレイモジュールとして利用できる。
論文 参考訳(メタデータ) (2020-05-11T10:06:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。