論文の概要: CT Perfusion is All We Need: 4D CNN Segmentation of Penumbra and Core in
Patients With Suspected Ischemic Stroke
- arxiv url: http://arxiv.org/abs/2303.08757v4
- Date: Mon, 21 Aug 2023 07:02:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 01:26:12.786853
- Title: CT Perfusion is All We Need: 4D CNN Segmentation of Penumbra and Core in
Patients With Suspected Ischemic Stroke
- Title(参考訳): 脳卒中疑似脳卒中患者における4d cnnによるpenumbraとcoreの分画
- Authors: Luca Tomasetti, Kjersti Engan, Liv Jorunn H{\o}llesli, Kathinka
D{\ae}hli Kurz, Mahdieh Khanmohammadi
- Abstract要約: 本稿では,時間情報を完全に活用する4つの畳み込みを入力として利用する方法について検討する。
提案した4D mJ-Netを用いることで、ペニブラとコア領域の分割にそれぞれ0.53と0.23のDice係数が得られる。
- 参考スコア(独自算出の注目度): 1.6836876499886009
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Precise and fast prediction methods for ischemic areas comprised of dead
tissue, core, and salvageable tissue, penumbra, in acute ischemic stroke (AIS)
patients are of significant clinical interest. They play an essential role in
improving diagnosis and treatment planning. Computed Tomography (CT) scan is
one of the primary modalities for early assessment in patients with suspected
AIS. CT Perfusion (CTP) is often used as a primary assessment to determine
stroke location, severity, and volume of ischemic lesions. Current automatic
segmentation methods for CTP mostly use already processed 3D parametric maps
conventionally used for clinical interpretation by radiologists as input.
Alternatively, the raw CTP data is used on a slice-by-slice basis as 2D+time
input, where the spatial information over the volume is ignored. In addition,
these methods are only interested in segmenting core regions, while predicting
penumbra can be essential for treatment planning. This paper investigates
different methods to utilize the entire 4D CTP as input to fully exploit the
spatio-temporal information, leading us to propose a novel 4D convolution
layer. Our comprehensive experiments on a local dataset of 152 patients divided
into three groups show that our proposed models generate more precise results
than other methods explored. Adopting the proposed 4D mJ-Net, a Dice
Coefficient of 0.53 and 0.23 is achieved for segmenting penumbra and core
areas, respectively. The code is available on
https://github.com/Biomedical-Data-Analysis-Laboratory/4D-mJ-Net.git.
- Abstract(参考訳): 急性期脳卒中 (ais) 患者における死組織, コア, 回収可能組織, ペナンブラの虚血部位の精密かつ迅速な予測法が臨床的に重要な関心事である。
診断と治療計画の改善に不可欠な役割を担っている。
CTスキャンはAISを疑う患者の早期評価における主要な指標の1つである。
CT Perfusion (CTP) は脳卒中の位置, 重症度, および虚血性病変の容積を決定する一次評価としてしばしば用いられる。
現在のCTPの自動セグメンテーション法は, 従来, 放射線技師による臨床解釈に用いられていた3次元パラメトリックマップを入力として用いている。
また、生のctpデータを2d+time入力としてスライスバイスライスベースで使用し、ボリューム上の空間情報を無視する。
さらに、これらの手法はコア領域のセグメント化のみに関心を持ち、ペナンブラの予測は治療計画に不可欠である。
本稿では,4次元CTP全体を入力として活用し,時空間情報を完全に活用する方法について検討し,新しい4次元畳み込み層を提案する。
3つのグループに分けた152人のローカルデータセットに関する包括的実験により,提案手法は他の手法よりも精度の高い結果が得られた。
提案した4D mJ-Netを用いることで、ペニブラとコア領域の分割にそれぞれ0.53と0.23のDice係数が得られる。
コードはhttps://github.com/biomedical-data- analysis-laboratory/4d-mj-net.gitで入手できる。
関連論文リスト
- CT-based brain ventricle segmentation via diffusion Schrödinger Bridge without target domain ground truths [0.9720086191214947]
クリニカルCTスキャンによる高効率かつ正確な脳室分画は、腹腔鏡下手術のような緊急手術には不可欠である。
我々は,CTセグメント化の真偽を必要とせず,新しい不確実性に留意した心室分画法を導入する。
提案手法では拡散型Schr"odinger Bridgeと残像U-Netを併用し,画像診断とMRI検査を併用した。
論文 参考訳(メタデータ) (2024-05-28T15:17:58Z) - Weakly-Supervised Detection of Bone Lesions in CT [48.34559062736031]
骨格領域は乳腺と前立腺に転移性癌が拡がる一般的な部位の1つである。
代用セグメンテーションタスクによりCTボリュームの骨病変を検出するパイプラインを開発した。
不完全および部分的トレーニングデータを用いたにもかかわらず,CTでは96.7%,47.3%の精度で骨病変が検出された。
論文 参考訳(メタデータ) (2024-01-31T21:05:34Z) - Multi-input segmentation of damaged brain in acute ischemic stroke
patients using slow fusion with skip connection [1.372466817835681]
急性虚血性脳梗塞患者における2つの虚血領域(コアとペナムブラ)を自動分割する方法を提案する。
我々のモデルは、マルチインプットと遅い融合を伴う畳み込み・デコンボリューションのボトルネック構造に基づいている。
提案したアーキテクチャは、神経放射線学者が注釈付けした地上の真実に匹敵する効果的な性能と結果を示す。
論文 参考訳(メタデータ) (2022-03-18T16:26:53Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Hepatic vessel segmentation based on 3Dswin-transformer with inductive
biased multi-head self-attention [46.46365941681487]
Indu BIased Multi-Head Attention Vessel Net という,堅牢なエンドツーエンドのコンテナセグメンテーションネットワークを提案する。
正確な肝血管のボクセルを見つけるために,パッチワイド埋め込みよりもボクセルワイド埋め込みを導入する。
一方,絶対位置埋め込みから帰納的バイアス付き相対的位置埋め込みを学習する帰納的バイアス付きマルチヘッド自己アテンションを提案する。
論文 参考訳(メタデータ) (2021-11-05T10:17:08Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - CNN Based Segmentation of Infarcted Regions in Acute Cerebral Stroke
Patients From Computed Tomography Perfusion Imaging [2.1626699124055504]
血栓溶解療法は脳損傷を軽減できるが、治療窓は狭い。
Computed To Perfusion Imagingは、脳卒中患者の一般的な一次評価ツールです。
完全自動化された4次元畳み込みニューラルネットワークに基づくセグメンテーション手法を提案する。
論文 参考訳(メタデータ) (2021-04-07T09:09:13Z) - COVID-19 identification from volumetric chest CT scans using a
progressively resized 3D-CNN incorporating segmentation, augmentation, and
class-rebalancing [4.446085353384894]
新型コロナウイルスは世界的なパンデミックの流行だ。
高い感度のコンピュータ支援スクリーニングツールは、疾患の診断と予後に不可欠である。
本稿では,3次元畳み込みニューラルネットワーク(CNN)に基づく分類手法を提案する。
論文 参考訳(メタデータ) (2021-02-11T18:16:18Z) - Assignment Flow for Order-Constrained OCT Segmentation [0.0]
網膜層厚の同定は、患者ごとに個別に行う重要な課題である。
自動セグメンテーションモデルの構築は,医用画像処理分野において重要な課題となっている。
我々は、秩序に制約された3D OCT網膜細胞層セグメンテーションのための新しい、純粋にデータ駆動型テキスト幾何学的アプローチを提案する。
論文 参考訳(メタデータ) (2020-09-10T01:57:53Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。