Scalable Multi-Task Learning for Particle Collision Event Reconstruction with Heterogeneous Graph Neural Networks
- URL: http://arxiv.org/abs/2504.21844v1
- Date: Wed, 30 Apr 2025 17:53:08 GMT
- Title: Scalable Multi-Task Learning for Particle Collision Event Reconstruction with Heterogeneous Graph Neural Networks
- Authors: William Sutcliffe, Marta Calvi, Simone Capelli, Jonas Eschle, Julián García Pardiñas, Abhijit Mathad, Azusa Uzuki, Nicola Serra,
- Abstract summary: Multiplicities are straining latency and storage requirements at the data acquisition stage.<n>New complications are emerging, including higher background levels and more frequent particle misassociations.<n>We propose a novel Heterogeneous Graph Neural Network architecture featuring unique representations for diverse particle collision relationships.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing luminosity frontier at the Large Hadron Collider is challenging the reconstruction and analysis of particle collision events. Increased particle multiplicities are straining latency and storage requirements at the data acquisition stage, while new complications are emerging, including higher background levels and more frequent particle vertex misassociations. This in turn necessitates the development of more holistic and scalable reconstruction methods that take advantage of recent advances in machine learning. We propose a novel Heterogeneous Graph Neural Network (HGNN) architecture featuring unique representations for diverse particle collision relationships and integrated graph pruning layers for scalability. Trained with a multi-task paradigm in an environment mimicking the LHCb experiment, this HGNN significantly improves beauty hadron reconstruction performance. Notably, it concurrently performs particle vertex association and graph pruning within a single framework. We quantify reconstruction and pruning performance, demonstrate enhanced inference time scaling with event complexity, and mitigate potential performance loss using a weighted message passing scheme.
Related papers
- Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
We introduce an unsupervised method based on a joint of generative training and discriminative training to learn graph structure and representation.<n>We propose an Energy-based Contrastive Learning (ECL) guided Graph Structure Refinement (GSR) framework, denoted as ECL-GSR.<n>ECL-GSR achieves faster training with fewer samples and memories against the leading baseline, highlighting its simplicity and efficiency in downstream tasks.
arXiv Detail & Related papers (2024-12-20T04:05:09Z) - Enhancing High-Energy Particle Physics Collision Analysis through Graph Data Attribution Techniques [0.0]
This paper uses a simulated particle collision dataset to integrate influence analysis inside the graph classification pipeline.
By using a Graph Neural Network for initial training, we applied a gradient-based data influence method to identify influential training samples.
By analyzing the discarded elements we can provide further insights about the event classification task.
arXiv Detail & Related papers (2024-07-20T12:40:03Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Improved particle-flow event reconstruction with scalable neural networks for current and future particle detectors [1.4609888393206634]
We study scalable machine learning models for event reconstruction in electron-positron collisions based on a full detector simulation.
We compare a graph neural network and kernel-based transformer and demonstrate that we can avoid operations while achieving realistic reconstruction.
The best graph neural network model shows improvement in the jet transverse momentum resolution by up to 50% compared to the rule-based algorithm.
arXiv Detail & Related papers (2023-09-13T08:16:15Z) - Graph Neural Networks-based Hybrid Framework For Predicting Particle
Crushing Strength [31.05985193732974]
We use Graph Neural Networks to characterize the mechanical behaviors of particle crushing.
We devise a hybrid framework based on GNNs to predict particle crushing strength in a particle fragment view.
Our data and code are released at https://github.com/doujiang-zheng/GNN-For-Particle-Crushing.
arXiv Detail & Related papers (2023-07-26T02:18:04Z) - Deep Temporal Graph Clustering [77.02070768950145]
We propose a general framework for deep Temporal Graph Clustering (GC)
GC introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs.
Our framework can effectively improve the performance of existing temporal graph learning methods.
arXiv Detail & Related papers (2023-05-18T06:17:50Z) - Interpretable Joint Event-Particle Reconstruction for Neutrino Physics
at NOvA with Sparse CNNs and Transformers [124.29621071934693]
We present a novel neural network architecture that combines the spatial learning enabled by convolutions with the contextual learning enabled by attention.
TransformerCVN simultaneously classifies each event and reconstructs every individual particle's identity.
This architecture enables us to perform several interpretability studies which provide insights into the network's predictions.
arXiv Detail & Related papers (2023-03-10T20:36:23Z) - Efficient Image Super-Resolution with Feature Interaction Weighted Hybrid Network [101.53907377000445]
Lightweight image super-resolution aims to reconstruct high-resolution images from low-resolution images using low computational costs.
Existing methods result in the loss of middle-layer features due to activation functions.
We propose a Feature Interaction Weighted Hybrid Network (FIWHN) to minimize the impact of intermediate feature loss on reconstruction quality.
arXiv Detail & Related papers (2022-12-29T05:57:29Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - Performance of Particle Tracking Using a Quantum Graph Neural Network [1.0480625205078853]
The Large Hadron Collider (LHC) will be upgraded to further increase the instantaneous rate of particle collisions (luminosity) and become the High Luminosity LHC.
This work explores the possibility of converting a novel Graph Neural Network model, that proven itself for the track reconstruction task, to a Hybrid Graph Neural Network in order to benefit the exponentially growing Hilbert Space.
arXiv Detail & Related papers (2020-12-02T18:23:48Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z) - A Quantum Graph Neural Network Approach to Particle Track Reconstruction [1.087475836765689]
We present an improved model with an iterative approach to overcome the low accuracy of the initial oversimplified Tree Network (TTN) model.
We aim to leverage the capability of quantum computing to evaluate a very large number of states simultaneously and thus to effectively search a large parameter space.
arXiv Detail & Related papers (2020-07-14T07:25:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.