Improved particle-flow event reconstruction with scalable neural networks for current and future particle detectors
- URL: http://arxiv.org/abs/2309.06782v6
- Date: Tue, 16 Jul 2024 07:57:44 GMT
- Title: Improved particle-flow event reconstruction with scalable neural networks for current and future particle detectors
- Authors: Joosep Pata, Eric Wulff, Farouk Mokhtar, David Southwick, Mengke Zhang, Maria Girone, Javier Duarte,
- Abstract summary: We study scalable machine learning models for event reconstruction in electron-positron collisions based on a full detector simulation.
We compare a graph neural network and kernel-based transformer and demonstrate that we can avoid operations while achieving realistic reconstruction.
The best graph neural network model shows improvement in the jet transverse momentum resolution by up to 50% compared to the rule-based algorithm.
- Score: 1.4609888393206634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient and accurate algorithms are necessary to reconstruct particles in the highly granular detectors anticipated at the High-Luminosity Large Hadron Collider and the Future Circular Collider. We study scalable machine learning models for event reconstruction in electron-positron collisions based on a full detector simulation. Particle-flow reconstruction can be formulated as a supervised learning task using tracks and calorimeter clusters. We compare a graph neural network and kernel-based transformer and demonstrate that we can avoid quadratic operations while achieving realistic reconstruction. We show that hyperparameter tuning significantly improves the performance of the models. The best graph neural network model shows improvement in the jet transverse momentum resolution by up to 50% compared to the rule-based algorithm. The resulting model is portable across Nvidia, AMD and Habana hardware. Accurate and fast machine-learning based reconstruction can significantly improve future measurements at colliders.
Related papers
- Equivariant Graph Neural Networks for Charged Particle Tracking [1.6626046865692057]
EuclidNet is a novel symmetry-equivariant GNN for charged particle tracking.
We benchmark it against the state-of-the-art Interaction Network on the TrackML dataset.
Our results show that EuclidNet achieves near-state-of-the-art performance at small model scales.
arXiv Detail & Related papers (2023-04-11T15:43:32Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Machine Learning for Particle Flow Reconstruction at CMS [7.527568379083754]
We provide details on the implementation of a machine-learning based particle flow algorithm for CMS.
The algorithm reconstructs stable particles based on calorimeter clusters and tracks to provide a global event reconstruction.
arXiv Detail & Related papers (2022-03-01T10:11:44Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - MLPF: Efficient machine-learned particle-flow reconstruction using graph
neural networks [0.0]
In general-purpose particle detectors, the particle-flow algorithm may be used to reconstruct a particle-level view of the event.
We introduce a novel, end-to-end trainable, machine-learned particle-flow algorithm based on parallelizable, scalable, and graph neural networks.
We report the physics and computational performance of the algorithm on a Monte Carlo dataset of top quark-antiquark pairs produced in proton-proton collisions.
arXiv Detail & Related papers (2021-01-21T12:47:54Z) - DCTRGAN: Improving the Precision of Generative Models with Reweighting [1.2622634782102324]
We introduce a post-hoc correction to deep generative models to further improve their fidelity.
The correction takes the form of a reweighting function that can be applied to generated examples.
We show that the weighted GAN examples significantly improve the accuracy of the generated samples without a large loss in statistical power.
arXiv Detail & Related papers (2020-09-03T18:00:27Z) - A Quantum Graph Neural Network Approach to Particle Track Reconstruction [1.087475836765689]
We present an improved model with an iterative approach to overcome the low accuracy of the initial oversimplified Tree Network (TTN) model.
We aim to leverage the capability of quantum computing to evaluate a very large number of states simultaneously and thus to effectively search a large parameter space.
arXiv Detail & Related papers (2020-07-14T07:25:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.