論文の概要: A Scoping Review of Natural Language Processing in Addressing Medically Inaccurate Information: Errors, Misinformation, and Hallucination
- arxiv url: http://arxiv.org/abs/2505.00008v1
- Date: Wed, 16 Apr 2025 22:27:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-05 01:46:36.976725
- Title: A Scoping Review of Natural Language Processing in Addressing Medically Inaccurate Information: Errors, Misinformation, and Hallucination
- Title(参考訳): 医学的不正確な情報に対処する自然言語処理のスコーピングレビュー:誤り・誤情報・幻覚
- Authors: Zhaoyi Sun, Wen-Wai Yim, Ozlem Uzuner, Fei Xia, Meliha Yetisgen,
- Abstract要約: 本稿では,自然言語処理による情報の検出,修正,医療的不正確な情報検出の可能性と課題について検討する。
これらの概念を統一することにより、レビューでは、共有された方法論の基礎と、医療への明確な影響を強調している。
- 参考スコア(独自算出の注目度): 20.32167806486047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Objective: This review aims to explore the potential and challenges of using Natural Language Processing (NLP) to detect, correct, and mitigate medically inaccurate information, including errors, misinformation, and hallucination. By unifying these concepts, the review emphasizes their shared methodological foundations and their distinct implications for healthcare. Our goal is to advance patient safety, improve public health communication, and support the development of more reliable and transparent NLP applications in healthcare. Methods: A scoping review was conducted following PRISMA guidelines, analyzing studies from 2020 to 2024 across five databases. Studies were selected based on their use of NLP to address medically inaccurate information and were categorized by topic, tasks, document types, datasets, models, and evaluation metrics. Results: NLP has shown potential in addressing medically inaccurate information on the following tasks: (1) error detection (2) error correction (3) misinformation detection (4) misinformation correction (5) hallucination detection (6) hallucination mitigation. However, challenges remain with data privacy, context dependency, and evaluation standards. Conclusion: This review highlights the advancements in applying NLP to tackle medically inaccurate information while underscoring the need to address persistent challenges. Future efforts should focus on developing real-world datasets, refining contextual methods, and improving hallucination management to ensure reliable and transparent healthcare applications.
- Abstract(参考訳): 目的: 本レビューは, 誤報, 誤報, 幻覚など, 医学的に不正確な情報を検出し, 訂正し, 緩和するために自然言語処理(NLP)を使用する可能性と課題を検討することを目的とする。
これらの概念を統一することにより、レビューでは、共有された方法論の基礎と、医療への明確な影響を強調している。
我々の目標は、患者の安全を向上し、公衆衛生コミュニケーションを改善し、医療におけるより信頼性が高く透明なNLPアプリケーションの開発を支援することである。
方法: PRISMAガイドラインに従ってスコーピングレビューを行い,2020年から2024年までの5つのデータベースを対象とした分析を行った。
研究は、医学的に不正確な情報に対処するためにNLPを使用しており、トピック、タスク、ドキュメントタイプ、データセット、モデル、評価指標に分類された。
1) 誤り検出(2) 誤り訂正(3) 誤報検出(4) 誤報訂正(5) 幻覚検出(6) 幻覚緩和。
しかし、データプライバシ、コンテキスト依存、評価標準に関する課題は残る。
結論:本総説では,NLPを用いて医療的不正確な情報に対処し,永続的な課題に対処する必要性を強調した。
今後は、現実のデータセットの開発、文脈的手法の精査、幻覚管理の改善に注力し、信頼性と透明なヘルスケアアプリケーションを保証する必要がある。
関連論文リスト
- Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
大規模言語モデル(LLM)は、しばしばオープンエンドの医学的問題に苦しむ。
本稿では,構造化医療推論を利用した新しいアプローチを提案する。
我々の手法は85.8のファクチュアリティスコアを達成し、微調整されたモデルを上回る。
論文 参考訳(メタデータ) (2025-03-05T05:24:55Z) - Medical Hallucinations in Foundation Models and Their Impact on Healthcare [53.97060824532454]
マルチモーダルデータの処理と生成が可能なファンデーションモデルは、医療におけるAIの役割を変革した。
医療幻覚を、モデルが誤解を招く医療内容を生成する場合の例と定義する。
以上の結果から,Chain-of-Thought (CoT) や Search Augmented Generation などの推論手法は,幻覚率を効果的に低減できることがわかった。
これらの知見は、ロバストな検出と緩和戦略のための倫理的かつ実践的な衝動を浮き彫りにした。
論文 参考訳(メタデータ) (2025-02-26T02:30:44Z) - Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
本研究は,AI支援医療診断における信頼性の重要課題について論じる。
本研究は,診断に自信がなければ,診断システムによる意思決定の回避を可能にする選択予測手法に焦点をあてる。
我々は、選択予測タスクにおける信頼性を高めるための新しい最先端手法であるHUQ-2を紹介する。
論文 参考訳(メタデータ) (2025-02-25T10:15:21Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
時系列学習は、データ駆動の*クリニカルな意思決定支援のパンとバターである*
Clairvoyanceは、ソフトウェアツールキットとして機能する、統合されたエンドツーエンドのオートMLフレンドリなパイプラインを提案する。
Clairvoyanceは、臨床時系列MLのための包括的で自動化可能なパイプラインの生存可能性を示す最初のものである。
論文 参考訳(メタデータ) (2023-10-28T12:08:03Z) - HealthFC: Verifying Health Claims with Evidence-Based Medical Fact-Checking [5.065947993017158]
HealthFCは、ドイツ語と英語で750件の健康関連クレームのデータセットで、医療専門家による正確さをラベル付けしている。
データセットの分析を行い、その特性と課題を強調します。
データセットは、将来の使用の可能性が高い、挑戦的なテストベッドであることを示す。
論文 参考訳(メタデータ) (2023-09-15T16:05:48Z) - Medical Misinformation in AI-Assisted Self-Diagnosis: Development of a Method (EvalPrompt) for Analyzing Large Language Models [4.8775268199830935]
本研究は、自己診断ツールとしての大規模言語モデル(LLM)の有効性と、医療情報の拡散における役割を評価することを目的とする。
我々は,実世界の自己診断を模倣するオープンエンド質問を用いて,現実的な自己診断を模倣する文のドロップアウトを行い,情報不足を伴う現実的な自己診断を模倣する。
その結果, LLMの応答が不明確で不正確な場合が多いため, LLMの質素な機能を強調した。
論文 参考訳(メタデータ) (2023-07-10T21:28:26Z) - Natural Language Processing in Electronic Health Records in Relation to
Healthcare Decision-making: A Systematic Review [2.555168694997103]
自然言語処理は電子健康記録から臨床知見を抽出するために広く用いられている。
注釈付きデータや自動化ツール、その他の課題の欠如は、EHRに対するNLPのフル活用を妨げる。
機械学習(ML)、ディープラーニング(DL)、NLP技術を研究し、この分野の限界と機会を包括的に理解するために比較した。
論文 参考訳(メタデータ) (2023-06-22T12:10:41Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - "Nothing Abnormal": Disambiguating Medical Reports via Contrastive
Knowledge Infusion [6.9551174393701345]
コントラスト型事前学習と摂動型書き換えに基づく書き換えアルゴリズムを提案する。
胸部報告に基づくOpenI-Annotatedと、一般的な医療報告に基づくVA-Annotatedの2つのデータセットを作成しました。
提案アルゴリズムは,高内容忠実度で少ないあいまいな方法で文を効果的に書き換える。
論文 参考訳(メタデータ) (2023-05-15T02:01:20Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
本稿では,Re$3$Writer法を提案する。
本手法が患者の退院指示生成に有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:34:39Z) - DR.BENCH: Diagnostic Reasoning Benchmark for Clinical Natural Language
Processing [5.022185333260402]
診断推論ベンチマーク(DR.BENCH)は臨床診断推論能力を持つcNLPモデルの開発と評価のための新しいベンチマークである。
DR.BENCHは、訓練済みの言語モデルを評価するための自然言語生成フレームワークとして設計された最初の臨床スイートである。
論文 参考訳(メタデータ) (2022-09-29T16:05:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。