論文の概要: Sparks of Tabular Reasoning via Text2SQL Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2505.00016v2
- Date: Fri, 02 May 2025 11:34:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-05 13:22:23.475122
- Title: Sparks of Tabular Reasoning via Text2SQL Reinforcement Learning
- Title(参考訳): Text2SQL強化学習による語彙推論の火花
- Authors: Josefa Lia Stoisser, Marc Boubnovski Martell, Julien Fauqueur,
- Abstract要約: この研究は、Text-to-the-taskを、大規模言語モデル(LLM)にデータの推論と操作を教えるための経路として再構成した。
本稿では,テーブルフィールドをトラバースし,フィルタし,集約する方法をモデルに教える2段階フレームワークを提案する。
提案手法は,BIRD や CRT-QA などの推論集約型データセットに対して,理論的に有意な向上を実現している。
- 参考スコア(独自算出の注目度): 0.12289361708127876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work reframes the Text-to-SQL task as a pathway for teaching large language models (LLMs) to reason over and manipulate tabular data--moving beyond the traditional focus on query generation. We propose a two-stage framework that leverages SQL supervision to develop transferable table reasoning capabilities. First, we synthesize detailed chain-of-thought (CoT) traces from real-world SQL queries, providing step-by-step, clause-level supervision that teaches the model how to traverse, filter, and aggregate table fields. Second, we introduce a Group Relative Policy Optimization (GRPO) reinforcement learning objective that connects SQL execution accuracy to generalizable reasoning by encouraging steps that extend beyond task-specific syntax and transfer across datasets. Empirically, our approach improves performance on standard Text-to-SQL benchmarks and achieves substantial gains on reasoning-intensive datasets such as BIRD and CRT-QA, demonstrating enhanced generalization and interpretability. Specifically, the distilled-quantized LLaMA model achieved a relative 33.9\% increase in accuracy when trained on Text-to-SQL tasks, while Qwen achieved a relative 14.5\% increase. These results suggest that SQL can serve not only as a target formalism but also as an effective scaffold for learning robust, transferable reasoning over structured data.
- Abstract(参考訳): この作業では、Text-to-SQLタスクを、大規模言語モデル(LLM)に、クエリ生成に伝統的な焦点を絞った、テーブル形式のデータの推論と操作を教えるためのパスとして再設計する。
転送可能なテーブル推論機能を開発するために,SQLの監視を利用する2段階のフレームワークを提案する。
まず、実際のSQLクエリから詳細なチェーン・オブ・シークレット(CoT)トレースを合成し、ステップバイステップで、テーブルフィールドをトラバース、フィルタ、集約する方法をモデルに教える節レベルの監視を提供する。
第2に、タスク固有の構文を超えて、データセット間での転送を促進することで、SQLの実行精度を一般化可能な推論に接続するグループ相対ポリシー最適化(GRPO)強化学習の目標を導入する。
実験により,標準的なテキスト-SQLベンチマークの性能向上とBIRDやCRT-QAなどの推論集約型データセットの大幅な向上を実現し,一般化と解釈可能性の向上を図った。
具体的には, 蒸留液化LLaMAはテキスト-SQLタスクのトレーニングにおいて, 相対33.9 %の精度向上を実現し, Qwenは相対14.5 %の精度向上を達成した。
これらの結果は、SQLがターゲットの形式主義だけでなく、構造化されたデータに対する堅牢で移動可能な推論を学習するための効果的な足場としても機能することを示唆している。
関連論文リスト
- Bridging the Gap: Transforming Natural Language Questions into SQL Queries via Abstract Query Pattern and Contextual Schema Markup [6.249316460506702]
構造的マッピングギャップと語彙的マッピングギャップの2つの重要なギャップを識別する。
PAS関連は87.9%の実行精度を達成し、BIRDデータセットの64.67%の実行精度を導いた。
スパイダーベンチマークの結果は87.9%の精度でスパイダーベンチマークの最先端を新たに設定し、BIRDデータセットで64.67%の精度で結果を導いた。
論文 参考訳(メタデータ) (2025-02-20T16:11:27Z) - STaR-SQL: Self-Taught Reasoner for Text-to-SQL [20.719165038519744]
チェーンオブ思考」の理論的根拠は、複雑な推論タスクにおける大規模言語モデルの性能向上に有効であることが証明されている。
テキスト駆動のような構造化されたタスクにそのようなテクニックを適用することは、ほとんど探索されていない。
本稿では、クエリ生成を推論プロセスとして再編成する新しいアプローチである、テキスト駆動型セルフトレーサ(STaR-)を提案する。
挑戦的なスパイダーベンチマークの実験結果によると、STaR-はテキストからパフォーマンスを大幅に改善し、86.6%の精度を実現している。
これらの知見は、推論強化トレーニングの可能性を強調している。
論文 参考訳(メタデータ) (2025-02-19T08:58:44Z) - OpenSearch-SQL: Enhancing Text-to-SQL with Dynamic Few-shot and Consistency Alignment [6.2089733671434875]
我々は,テキストからエージェントまでのタスクを,整合性アライメント機構に基づくアライメントモジュールとともに,前処理,抽出,生成,リファインメントの4つの主要なモジュールに分割するOpenSearch-を提案する。
これらの手法はテキスト・ツー・エージェント・タスクにおけるLLMの性能を大幅に向上させた。
実験の結果、OpenSearch-はBIRD開発セットで69.3%、テストセットで72.28%、報酬ベースの効率スコア(R-VES)で69.3で実行精度(EX)を達成した。
論文 参考訳(メタデータ) (2025-02-19T07:51:50Z) - Enhancing LLM Fine-tuning for Text-to-SQLs by SQL Quality Measurement [1.392448435105643]
Text-to-sにより、専門家でないユーザは、自然言語クエリを使用してデータベースから要求された情報を取得することができる。
GPT4やT5のような現在の最先端(SOTA)モデルは、BIRDのような大規模ベンチマークで素晴らしいパフォーマンスを示している。
本稿では,テキスト・ツー・ス・パフォーマンスを向上させるためにSQL Qualityのみを必要とする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T17:21:51Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
文脈内学習を伴う大規模言語モデル(LLM)は、テキスト・ツー・タスクの性能を大幅に改善した。
In-context prompt Engineering のための新しい検索ベースフレームワーク RB- を提案する。
実験により,我々のモデルは,公開データセットのBIRDとSpiderの競合ベースラインよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-07-11T08:19:58Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - STAR: SQL Guided Pre-Training for Context-dependent Text-to-SQL Parsing [64.80483736666123]
文脈依存型テキスト・ツー・パースのための新しい事前学習フレームワークSTARを提案する。
さらに,STARを事前学習するための大規模コンテキスト依存型テキスト対話コーパスを構築した。
大規模な実験により、STARは2つの下流ベンチマークで新しい最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2022-10-21T11:30:07Z) - Weakly Supervised Text-to-SQL Parsing through Question Decomposition [53.22128541030441]
我々は最近提案されたQDMR(QDMR)という意味表現を活用している。
質問やQDMR構造(非専門家によって注釈付けされたり、自動予測されたりする)、回答が与えられたら、我々は自動的にsqlクエリを合成できる。
本結果は,NL-ベンチマークデータを用いて訓練したモデルと,弱い教師付きモデルが競合することを示す。
論文 参考訳(メタデータ) (2021-12-12T20:02:42Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
テーブルセマンティック解析のための効果的な事前学習手法GraPPaを提案する。
我々は、同期文脈自由文法を用いて、高自由度テーブル上に合成質問ペアを構築する。
実世界のデータを表現できるモデルの能力を維持するため、マスキング言語モデリングも含んでいる。
論文 参考訳(メタデータ) (2020-09-29T08:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。