Nemotron-Research-Tool-N1: Exploring Tool-Using Language Models with Reinforced Reasoning
- URL: http://arxiv.org/abs/2505.00024v2
- Date: Mon, 12 May 2025 03:01:39 GMT
- Title: Nemotron-Research-Tool-N1: Exploring Tool-Using Language Models with Reinforced Reasoning
- Authors: Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz, Bryan Catanzaro, Andrew Tao, Qingyun Wu, Zhiding Yu, Guilin Liu,
- Abstract summary: Rule-based reinforcement learning can be used to enhance tool-calling in large language models.<n>Tool-N1-7B/14B clearly outperform GPT-4o on several major benchmarks.
- Score: 93.30252692375886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enabling large language models with external tools has become a pivotal strategy for extending their functionality beyond text space. To enhance LLMs' tool-calling abilities, previous approaches primarily rely on supervised fine-tuning (SFT) with trajectories distilled from stronger models, often resulting in imitative reasoning that limits generalization. In this work, we explore rule-based reinforcement learning to enhance tool-calling in LLMs, resulting in Nemotron-Research-Tool-N1, a series of tool-calling reasoning models. Rather than enforcing supervision over intermediate distilled reasoning traces, Tool-N1 is trained with a binary RL reward that assesses only the format validity and functional correctness of tool invocations. This lightweight supervision allows the model to develop reasoning strategies independently, without relying on annotated trajectories. Experiments on several major benchmarks show that Tool-N1-7B/14B clearly outperform GPT-4o. We conduct a systematic study on the design of rule-based reinforcement learning strategies for training tool-calling models. Using 5,518 distilled reasoning trajectories, we compare SFT, RL, and the SFT-then-RL pipeline, finding that the widely adopted SFT-then-RL paradigm does not necessarily outperform pure RL.
Related papers
- Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - Reinforcement learning fine-tuning of language model for instruction following and math reasoning [0.0]
This study investigates the effectiveness of reinforcement learning techniques on a compact language model (Qwen2.5-0.5B Base)<n>We compare supervised fine-tuning (SFT), Direct Preference Optimization (DPO) using preference-labeled data, and Reinforce Leave-One-Out (RLOO) with reward models.<n>Experiments show that RLOO with DeBERTa reward modeling achieves the best alignment, while DPO provides strong and consistent results.
arXiv Detail & Related papers (2025-06-11T22:49:42Z) - Bridging Supervised Learning and Reinforcement Learning in Math Reasoning [55.889740979706815]
Reinforcement Learning (RL) has played a central role in the recent surge of math abilities by enabling self-improvement through binary verifier signals.<n>In this work, we propose Negative-aware Fine-Tuning (NFT) -- a supervised approach that enables LLMs to reflect on their failures and improve autonomously with no external teachers.
arXiv Detail & Related papers (2025-05-23T17:17:40Z) - Tool-Star: Empowering LLM-Brained Multi-Tool Reasoner via Reinforcement Learning [63.31585771716123]
Large language models (LLMs) have shown remarkable reasoning capabilities via large-scale reinforcement learning (RL)<n>We introduce Tool-Star, an RL-based framework designed to empower LLMs to autonomously invoke multiple external tools during stepwise reasoning.<n>Tool-Star integrates six types of tools and incorporates systematic designs in both data synthesis and training.
arXiv Detail & Related papers (2025-05-22T09:00:19Z) - OpenThinkIMG: Learning to Think with Images via Visual Tool Reinforcement Learning [57.89304342666846]
We introduce OpenThinkIMG, the first open-source, comprehensive end-to-end framework for tool-augmented LVLMs.<n>We propose a novel reinforcement learning framework V-ToolRL to train LVLMs to learn adaptive policies for invoking external vision tools.<n>V-ToolRL enables LVLMs to autonomously discover optimal tool-usage strategies.
arXiv Detail & Related papers (2025-05-13T14:35:51Z) - ToolRL: Reward is All Tool Learning Needs [54.16305891389931]
Large Language Models (LLMs) often undergo supervised fine-tuning (SFT) to acquire tool use capabilities.<n>Recent advancements in reinforcement learning (RL) have demonstrated promising reasoning and generalization abilities.<n>We present the first comprehensive study on reward design for tool selection and application tasks within the RL paradigm.
arXiv Detail & Related papers (2025-04-16T21:45:32Z) - ReTool: Reinforcement Learning for Strategic Tool Use in LLMs [27.07998056454784]
ReTool enhances long-form reasoning with tool-integrated learning.<n>Model achieves 67% accuracy with 400 training steps.<n>Remarkably, ReTool-32B attains 72.5% accuracy in extended settings.
arXiv Detail & Related papers (2025-04-15T18:10:22Z) - SFT or RL? An Early Investigation into Training R1-Like Reasoning Large Vision-Language Models [39.551767637896404]
This work revisits the dominant supervised fine-tuning (SFT) then reinforcement learning (RL) paradigm for training Large Vision-Language Models (LVLMs)<n>We show that SFT can significantly undermine subsequent RL by inducing pseudo reasoning paths'' imitated from expert models.<n>We introduce VLAA-Thinking, a new multimodal dataset designed to support reasoning in LVLMs.
arXiv Detail & Related papers (2025-04-10T16:54:05Z) - ToRL: Scaling Tool-Integrated RL [25.477841726836836]
ToRL is a framework for training large language models to autonomously use computational tools.<n>ToRL allows models to explore and discover optimal strategies for tool use.<n>Experiments with Qwen2.5-Math models show significant improvements.
arXiv Detail & Related papers (2025-03-30T10:16:25Z) - R1-Zero's "Aha Moment" in Visual Reasoning on a 2B Non-SFT Model [70.77691645678804]
We present the first successful replication of emergent characteristics for multimodal reasoning on only a non-SFT 2B model.
Our model achieves 59.47% accuracy on CVBench, outperforming the base model by approximately 30% and exceeding both SFT setting by 2%.
In addition, we share our failed attempts and insights in attempting to achieve R1-like reasoning using RL with instruct models.
arXiv Detail & Related papers (2025-03-07T04:21:47Z) - START: Self-taught Reasoner with Tools [51.38785489790888]
We introduce START (Self-Taught Reasoner with Tools), a tool-integrated long Chain-of-thought (CoT) reasoning LLM.<n> START is capable of performing complex computations, self-checking, exploring diverse methods, and self-ging.<n>It significantly outperforms the base QwQ-32B and achieves performance comparable to the state-of-the-art open-weight model R1-Distill-Qwen-32B.
arXiv Detail & Related papers (2025-03-06T17:11:51Z) - AlphaMaze: Enhancing Large Language Models' Spatial Intelligence via GRPO [0.0]
Large Language Models (LLMs) have demonstrated impressive capabilities in language processing, yet they often struggle with tasks requiring visual spatial reasoning.<n>We introduce a novel two-stage training framework designed to equip standard LLMs with visual reasoning abilities for maze navigation.
arXiv Detail & Related papers (2025-02-20T16:05:18Z) - Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
We propose MeCo, an adaptive decision-making strategy for external tool use.<n>MeCo captures high-level cognitive signals in the representation space, guiding when to invoke tools.<n>Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making.
arXiv Detail & Related papers (2025-02-18T15:45:01Z) - Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling [52.34735382627312]
Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.<n>Existing approaches mainly rely on imitation learning and struggle to achieve effective test-time scaling.<n>We present T1 to scale reinforcement learning by encouraging exploration and understand inference scaling.
arXiv Detail & Related papers (2025-01-20T18:33:33Z) - ReWOO: Decoupling Reasoning from Observations for Efficient Augmented
Language Models [32.95155349925248]
We propose a modular paradigm ReWOO that detaches the reasoning process from external observations, thus significantly reducing token consumption.
We show that ReWOO achieves 5x token efficiency and 4% accuracy improvement on HotpotQA, a multi-step reasoning benchmark.
Our illustrative work offloads reasoning ability from 175B GPT3.5 into 7B LLaMA, demonstrating the significant potential for truly efficient and scalable ALM systems.
arXiv Detail & Related papers (2023-05-23T00:16:48Z) - AutoBERT-Zero: Evolving BERT Backbone from Scratch [94.89102524181986]
We propose an Operation-Priority Neural Architecture Search (OP-NAS) algorithm to automatically search for promising hybrid backbone architectures.
We optimize both the search algorithm and evaluation of candidate models to boost the efficiency of our proposed OP-NAS.
Experiments show that the searched architecture (named AutoBERT-Zero) significantly outperforms BERT and its variants of different model capacities in various downstream tasks.
arXiv Detail & Related papers (2021-07-15T16:46:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.