AdaptMI: Adaptive Skill-based In-context Math Instruction for Small Language Models
- URL: http://arxiv.org/abs/2505.00147v1
- Date: Wed, 30 Apr 2025 19:35:46 GMT
- Title: AdaptMI: Adaptive Skill-based In-context Math Instruction for Small Language Models
- Authors: Yinghui He, Abhishek Panigrahi, Yong Lin, Sanjeev Arora,
- Abstract summary: In-context learning (ICL) allows a language model to improve its problem-solving capability when provided with suitable information in context.<n>Recent works show ICL performance can be improved by leveraging a frontier large language model's (LLM) ability to predict required skills to solve a problem.<n>While this skill-based strategy boosts ICL performance in larger models, its gains on small language models (SLMs) have been minimal.<n>We introduce AdaptMI, an adaptive approach to selecting skill-based in-context Math Instructions for SLMs.
- Score: 41.247758234888835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In-context learning (ICL) allows a language model to improve its problem-solving capability when provided with suitable information in context. Since the choice of in-context information can be determined based on the problem itself, in-context learning is analogous to human learning from teachers in a classroom. Recent works (Didolkar et al., 2024a; 2024b) show that ICL performance can be improved by leveraging a frontier large language model's (LLM) ability to predict required skills to solve a problem, popularly referred to as an LLM's metacognition, and using the recommended skills to construct necessary in-context examples. While this skill-based strategy boosts ICL performance in larger models, its gains on small language models (SLMs) have been minimal, highlighting a performance gap in ICL capabilities. We investigate this gap and show that skill-based prompting can hurt SLM performance on easy questions by introducing unnecessary information, akin to cognitive overload. To address this, we introduce AdaptMI, an adaptive approach to selecting skill-based in-context Math Instructions for SLMs. Inspired by cognitive load theory from human pedagogy, our method only introduces skill-based examples when the model performs poorly. We further propose AdaptMI+, which adds examples targeted to the specific skills missing from the model's responses. On 5-shot evaluations across popular math benchmarks and five SLMs (1B--7B; Qwen, Llama), AdaptMI+ improves accuracy by up to 6% over naive skill-based strategies.
Related papers
- Catastrophic Forgetting in LLMs: A Comparative Analysis Across Language Tasks [0.0]
Large Language Models (LLMs) have significantly advanced Natural Language Processing (NLP)<n>This study evaluates the continual fine-tuning of various open-source LLMs on key NLU tasks.<n>Our results indicate that models such as Phi-3.5-mini exhibit minimal forgetting while maintaining strong learning capabilities.
arXiv Detail & Related papers (2025-04-01T23:06:55Z) - MAPLE: A Framework for Active Preference Learning Guided by Large Language Models [9.37268652939886]
We introduce MAPLE, a framework for large language model-guided Bayesian active preference learning.
Our results demonstrate that MAPLE accelerates the learning process and effectively improves humans' ability to answer queries.
arXiv Detail & Related papers (2024-12-10T05:55:14Z) - KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [73.34893326181046]
Large language models (LLMs) usually rely on retrieval-augmented generation to exploit knowledge materials in an instant manner.<n>We propose KBAlign, an approach designed for efficient adaptation to downstream tasks involving knowledge bases.<n>Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently.
arXiv Detail & Related papers (2024-11-22T08:21:03Z) - Real-Time Personalization for LLM-based Recommendation with Customized In-Context Learning [57.28766250993726]
This work explores adapting to dynamic user interests without any model updates.
Existing Large Language Model (LLM)-based recommenders often lose the in-context learning ability during recommendation tuning.
We propose RecICL, which customizes recommendation-specific in-context learning for real-time recommendations.
arXiv Detail & Related papers (2024-10-30T15:48:36Z) - Unlearnable Algorithms for In-context Learning [36.895152458323764]
In this paper, we focus on efficient unlearning methods for the task adaptation phase of a pretrained large language model.
We observe that an LLM's ability to do in-context learning for task adaptation allows for efficient exact unlearning of task adaptation training data.
We propose a new holistic measure of unlearning cost which accounts for varying inference costs.
arXiv Detail & Related papers (2024-02-01T16:43:04Z) - In-Context Unlearning: Language Models as Few Shot Unlearners [27.962361828354716]
We propose a new class of unlearning methods for Large Language Models (LLMs)
This method unlearns instances from the model by simply providing specific kinds of inputs in context, without the need to update model parameters.
Our experimental results demonstrate that in-context unlearning performs on par with, or in some cases outperforms other state-of-the-art methods that require access to model parameters.
arXiv Detail & Related papers (2023-10-11T15:19:31Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - Skill-Based Few-Shot Selection for In-Context Learning [123.26522773708683]
Skill-KNN is a skill-based few-shot selection method for in-context learning.
It does not require training or fine-tuning of any models, making it suitable for frequently expanding or changing example banks.
Experimental results across five cross-domain semantic parsing datasets and six backbone models show that Skill-KNN significantly outperforms existing methods.
arXiv Detail & Related papers (2023-05-23T16:28:29Z) - Concept-aware Training Improves In-context Learning Ability of Language
Models [0.0]
Many recent language models (LMs) of Transformers family exhibit so-called in-context learning (ICL) ability.
We propose a method to create LMs able to better utilize the in-context information.
We measure that data sampling of Concept-aware Training consistently improves models' reasoning ability.
arXiv Detail & Related papers (2023-05-23T07:44:52Z) - Pre-Training to Learn in Context [138.0745138788142]
The ability of in-context learning is not fully exploited because language models are not explicitly trained to learn in context.
We propose PICL (Pre-training for In-Context Learning), a framework to enhance the language models' in-context learning ability.
Our experiments show that PICL is more effective and task-generalizable than a range of baselines, outperforming larger language models with nearly 4x parameters.
arXiv Detail & Related papers (2023-05-16T03:38:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.