MAPLE: A Framework for Active Preference Learning Guided by Large Language Models
- URL: http://arxiv.org/abs/2412.07207v2
- Date: Fri, 20 Dec 2024 01:08:20 GMT
- Title: MAPLE: A Framework for Active Preference Learning Guided by Large Language Models
- Authors: Saaduddin Mahmud, Mason Nakamura, Shlomo Zilberstein,
- Abstract summary: We introduce MAPLE, a framework for large language model-guided Bayesian active preference learning.
Our results demonstrate that MAPLE accelerates the learning process and effectively improves humans' ability to answer queries.
- Score: 9.37268652939886
- License:
- Abstract: The advent of large language models (LLMs) has sparked significant interest in using natural language for preference learning. However, existing methods often suffer from high computational burdens, taxing human supervision, and lack of interpretability. To address these issues, we introduce MAPLE, a framework for large language model-guided Bayesian active preference learning. MAPLE leverages LLMs to model the distribution over preference functions, conditioning it on both natural language feedback and conventional preference learning feedback, such as pairwise trajectory rankings. MAPLE also employs active learning to systematically reduce uncertainty in this distribution and incorporates a language-conditioned active query selection mechanism to identify informative and easy-to-answer queries, thus reducing human burden. We evaluate MAPLE's sample efficiency and preference inference quality across two benchmarks, including a real-world vehicle route planning benchmark using OpenStreetMap data. Our results demonstrate that MAPLE accelerates the learning process and effectively improves humans' ability to answer queries.
Related papers
- Large Language Models are In-context Preference Learners [15.84585737510038]
We show that Large Language Models (LLMs) have native preference-learning capabilities that allow them to achieve sample-efficient preference learning.
We propose In-Context Preference Learning (ICPL), which uses in-context learning capabilities of LLMs to reduce human query inefficiency.
arXiv Detail & Related papers (2024-10-22T17:53:34Z) - Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
We propose a retrieval augmented generation (RAG) framework backed by a large language model (LLM) to correct the output of a smaller model for the linguistic task of morphological glossing.
We leverage linguistic information to make up for the lack of data and trainable parameters, while allowing for inputs from written descriptive grammars interpreted and distilled through an LLM.
We show that a compact, RAG-supported model is highly effective in data-scarce settings, achieving a new state-of-the-art for this task and our target languages.
arXiv Detail & Related papers (2024-10-01T04:20:14Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
Large language models (LLMs) often necessitate extensive labeled datasets and training compute to achieve impressive performance across downstream tasks.
This paper explores a self-training paradigm, where the LLM autonomously curates its own labels and selectively trains on unknown data samples.
Empirical evaluations demonstrate significant improvements in reducing hallucination in generation across multiple subjects.
arXiv Detail & Related papers (2024-06-17T07:25:09Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - LLMs in the Loop: Leveraging Large Language Model Annotations for Active Learning in Low-Resource Languages [1.149936119867417]
Low-resource languages face significant barriers in AI development due to limited linguistic resources and expertise for data labeling.
We propose leveraging the potential of LLMs in the active learning loop for data annotation.
Empirical evaluations, notably employing GPT-4-Turbo, demonstrate near-state-of-the-art performance with significantly reduced data requirements.
arXiv Detail & Related papers (2024-04-02T19:34:22Z) - Bayesian Preference Elicitation with Language Models [82.58230273253939]
We introduce OPEN, a framework that uses BOED to guide the choice of informative questions and an LM to extract features.
In user studies, we find that OPEN outperforms existing LM- and BOED-based methods for preference elicitation.
arXiv Detail & Related papers (2024-03-08T18:57:52Z) - Active Preference Inference using Language Models and Probabilistic Reasoning [13.523369679010685]
We introduce an inference-time algorithm that helps large language models infer user preferences.
Our algorithm uses a probabilistic model whose conditional distributions are defined by prompting an LLM.
Results in a simplified interactive web shopping setting with real product items show that an LLM equipped with our entropy reduction algorithm outperforms baselines.
arXiv Detail & Related papers (2023-12-19T09:58:54Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z) - Offline RL for Natural Language Generation with Implicit Language Q
Learning [87.76695816348027]
Large language models can be inconsistent when it comes to completing user specified tasks.
We propose a novel RL method, that combines both the flexible utility framework of RL with the ability of supervised learning.
In addition to empirically validating ILQL, we present a detailed empirical analysis situations where offline RL can be useful in natural language generation settings.
arXiv Detail & Related papers (2022-06-05T18:38:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.