論文の概要: GEOM-Drugs Revisited: Toward More Chemically Accurate Benchmarks for 3D Molecule Generation
- arxiv url: http://arxiv.org/abs/2505.00169v1
- Date: Wed, 30 Apr 2025 20:29:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.169637
- Title: GEOM-Drugs Revisited: Toward More Chemically Accurate Benchmarks for 3D Molecule Generation
- Title(参考訳): GEOM-Drugs:3D分子生成のためのより化学的に正確なベンチマークを目指して
- Authors: Filipp Nikitin, Ian Dunn, David Ryan Koes, Olexandr Isayev,
- Abstract要約: 我々はGEOM-Drugsを再検討し、修正された評価フレームワークを提案する。
データ前処理の問題を特定し, 化学的に正確な原子価表を作成し, GFN2-xTBに基づく幾何とエネルギーのベンチマークを導入する。
本研究は,3次元分子生成における化学的に厳密な評価手法の必要性を浮き彫りにした。
- 参考スコア(独自算出の注目度): 0.13107174618549586
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Deep generative models have shown significant promise in generating valid 3D molecular structures, with the GEOM-Drugs dataset serving as a key benchmark. However, current evaluation protocols suffer from critical flaws, including incorrect valency definitions, bugs in bond order calculations, and reliance on force fields inconsistent with the reference data. In this work, we revisit GEOM-Drugs and propose a corrected evaluation framework: we identify and fix issues in data preprocessing, construct chemically accurate valency tables, and introduce a GFN2-xTB-based geometry and energy benchmark. We retrain and re-evaluate several leading models under this framework, providing updated performance metrics and practical recommendations for future benchmarking. Our results underscore the need for chemically rigorous evaluation practices in 3D molecular generation. Our recommended evaluation methods and GEOM-Drugs processing scripts are available at https://github.com/isayevlab/geom-drugs-3dgen-evaluation.
- Abstract(参考訳): 深層生成モデルは、GEOM-Drugsデータセットが重要なベンチマークとして機能し、有効な3D分子構造を生成する上で大きな可能性を示している。
しかし、現在の評価プロトコルは、不正な原子価の定義、ボンドオーダー計算のバグ、基準データと矛盾する力場への依存など、重大な欠陥に悩まされている。
本研究では,GEOM-Drugsを再検討し,データ前処理における問題を特定し,修正し,化学的に正確な原子価表を構築し,GFN2-xTBに基づく幾何とエネルギーのベンチマークを導入する。
私たちは、このフレームワークの下でいくつかの主要なモデルを再訓練し、再評価し、パフォーマンスメトリクスを更新し、将来のベンチマークに実用的なレコメンデーションを提供します。
本研究は,3次元分子生成における化学的に厳密な評価手法の必要性を浮き彫りにした。
推奨評価手法とGEOM-Drugs処理スクリプトはhttps://github.com/isayevlab/geom-drugs-3dgen-evaluationで利用可能である。
関連論文リスト
- On Large-scale Evaluation of Embedding Models for Knowledge Graph Completion [1.2703808802607108]
知識グラフ埋め込み(KGE)モデルは知識グラフ補完のために広く研究されているが、その評価は非現実的なベンチマークによって制限されている。
標準的な評価基準は、欠落した三重項を正確に予測するためのモデルを罰するクローズドワールドの仮定に依存している。
本稿では,大規模データセットFB-CVT-REVとFB+CVT-REVの4つの代表的なKGEモデルを包括的に評価する。
論文 参考訳(メタデータ) (2025-04-11T20:49:02Z) - WelQrate: Defining the Gold Standard in Small Molecule Drug Discovery Benchmarking [13.880278087741482]
深層学習はコンピュータ支援による薬物発見に革命をもたらした。
ディープラーニングはコンピュータ支援薬の発見に革命をもたらしたが、AIコミュニティは主にモデルイノベーションに重点を置いてきた。
我々は、小型分子の薬物発見ベンチマークであるWelQrateの新しいゴールドスタンダードの確立を目指しています。
論文 参考訳(メタデータ) (2024-11-14T21:49:41Z) - GFlowNet Pretraining with Inexpensive Rewards [2.924067540644439]
A-GFN(Atomic GFlowNets)は、個々の原子をビルディングブロックとして活用し、薬物のような化学空間をより包括的に探索する基礎的な生成モデルである。
オフラインな薬物様分子データセットを用いた教師なし事前学習手法を提案する。
我々は、目標条件付き微調整プロセスを実装し、A-GFNを適応させて特定の目標特性に最適化する手法をさらに強化する。
論文 参考訳(メタデータ) (2024-09-15T11:42:17Z) - Delta Score: Improving the Binding Assessment of Structure-Based Drug
Design Methods [14.272327734087598]
そこで本研究では,有形医薬品要求量に基づく新しい評価基準であるデルタスコアについて紹介する。
実験の結果,現行の深部生成モデルで生成する分子はデルタ値で評価すると,地上基準真理よりもかなり遅れていることがわかった。
論文 参考訳(メタデータ) (2023-11-01T08:37:39Z) - Learning Evaluation Models from Large Language Models for Sequence Generation [61.8421748792555]
本稿では,大規模言語モデルを用いた3段階評価モデルトレーニング手法を提案する。
SummEval ベンチマークによる実験結果から,CSEM は人間ラベルデータなしで評価モデルを効果的に訓練できることが示された。
論文 参考訳(メタデータ) (2023-08-08T16:41:16Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
構造に基づく薬物設計(SBDD)は、タンパク質の3次元幾何学を利用して、潜在的な薬物候補を特定する。
近年の幾何学的深層学習の進歩は、3次元幾何学的データを効果的に統合・処理し、この分野を前進させてきた。
論文 参考訳(メタデータ) (2023-06-20T14:21:58Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
我々は、一般的な半教師付きフレームワークを用いて、難解な単分子3次元物体検出問題を改善する。
我々は、ラベルのないデータから豊富な情報的サンプルを探索する、新しい、シンプルで効果的なAugment and Criticize'フレームワークを紹介します。
3DSeMo_DLEと3DSeMo_FLEXと呼ばれる2つの新しい検出器は、KITTIのAP_3D/BEV(Easy)を3.5%以上改善した。
論文 参考訳(メタデータ) (2023-03-20T16:28:15Z) - From 2D to 3D: Re-thinking Benchmarking of Monocular Depth Prediction [80.67873933010783]
我々は,MDPが現在,3Dアプリケーションにおける予測の有用性を評価するのに有効な指標に頼っていることを論じる。
これにより、2Dベースの距離を最適化するのではなく、シーンの3D構造を正確に認識し、推定に向けて改善する新しい手法の設計と開発が制限される。
本稿では,MDP手法の3次元幾何評価に適した指標セットと,提案手法に不可欠な室内ベンチマークRIO-D3Dを提案する。
論文 参考訳(メタデータ) (2022-03-15T17:50:54Z) - Direct Molecular Conformation Generation [217.4815525740703]
本稿では,原子の座標を直接予測する手法を提案する。
提案手法は,4つの公開ベンチマークの最先端結果を実現する。
論文 参考訳(メタデータ) (2022-02-03T01:01:58Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。