論文の概要: Online Federation For Mixtures of Proprietary Agents with Black-Box Encoders
- arxiv url: http://arxiv.org/abs/2505.00216v1
- Date: Wed, 30 Apr 2025 23:19:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.186834
- Title: Online Federation For Mixtures of Proprietary Agents with Black-Box Encoders
- Title(参考訳): プロプライエタリエージェントとブラックボックスエンコーダの混合のためのオンラインフェデレーション
- Authors: Xuwei Yang, Fatemeh Tavakoli, David B. Emerson, Anastasis Kratsios,
- Abstract要約: ほとんどの業界標準の生成AIとフィーチャーエンコーダはプロプライエタリであり、ブラックボックスアクセスのみを提供する。
我々の問題は自然に非競合的なゲーム理論レンズに結びつく。
オンライン環境におけるユニークなナッシュ均衡の存在を示す。
- 参考スコア(独自算出の注目度): 8.658607927452248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most industry-standard generative AIs and feature encoders are proprietary, offering only black-box access: their outputs are observable, but their internal parameters and architectures remain hidden from the end-user. This black-box access is especially limiting when constructing mixture-of-expert type ensemble models since the user cannot optimize each proprietary AI's internal parameters. Our problem naturally lends itself to a non-competitive game-theoretic lens where each proprietary AI (agent) is inherently competing against the other AI agents, with this competition arising naturally due to their obliviousness of the AI's to their internal structure. In contrast, the user acts as a central planner trying to synchronize the ensemble of competing AIs. We show the existence of the unique Nash equilibrium in the online setting, which we even compute in closed-form by eliciting a feedback mechanism between any given time series and the sequence generated by each (proprietary) AI agent. Our solution is implemented as a decentralized, federated-learning algorithm in which each agent optimizes their structure locally on their machine without ever releasing any internal structure to the others. We obtain refined expressions for pre-trained models such as transformers, random feature models, and echo-state networks. Our ``proprietary federated learning'' algorithm is implemented on a range of real-world and synthetic time-series benchmarks. It achieves orders-of-magnitude improvements in predictive accuracy over natural benchmarks, of which there are surprisingly few due to this natural problem still being largely unexplored.
- Abstract(参考訳): ほとんどの業界標準の生成AIと機能エンコーダはプロプライエタリであり、ブラックボックスアクセスのみを提供する。
このブラックボックスアクセスは、各プロプライエタリなAIの内部パラメータを最適化できないため、エキスパートの混合型アンサンブルモデルを構築する場合に特に制限される。
我々の問題は、AI(エージェント)が本質的に他のAIエージェントと競合する非競合的なゲーム理論レンズに自然に結びついている。
対照的に、ユーザは、競合するAIのアンサンブルを同期させようとする中心的なプランナーとして機能する。
オンライン環境におけるユニークなナッシュ均衡の存在を示し、任意の時系列と各(プロプライエタリ)AIエージェントが生成するシーケンスの間にフィードバック機構を付与することで、クローズドフォームで計算する。
本手法は分散型フェデレート学習アルゴリズムとして実装され,各エージェントが内部構造を他のエージェントにリリースすることなく,各マシン上の構造をローカルに最適化する。
本研究では, トランス, ランダム特徴モデル, エコー状態ネットワークなどの事前学習モデルに対する洗練された表現を得る。
我々の ‘Prorietary Federated Learning'' アルゴリズムは実世界の時系列と合成時系列のベンチマークに実装されている。
これは、自然のベンチマークよりも予測精度のオーダー・オブ・マグニチュードの改善を実現している。
関連論文リスト
- An Efficient and Mixed Heterogeneous Model for Image Restoration [71.85124734060665]
現在の主流のアプローチは、CNN、Transformers、Mambasの3つのアーキテクチャパラダイムに基づいている。
混合構造融合に基づく効率的で汎用的なIRモデルであるRestorMixerを提案する。
論文 参考訳(メタデータ) (2025-04-15T08:19:12Z) - The BrowserGym Ecosystem for Web Agent Research [151.90034093362343]
BrowserGymエコシステムは、Webエージェントの効率的な評価とベンチマークの必要性の高まりに対処する。
本稿では,Webエージェント研究のためのBrowserGymベースの拡張エコシステムを提案する。
大規模なマルチベンチマークWebエージェント実験を初めて実施し、6つのWebエージェントベンチマークで6つの最先端LCMの性能を比較した。
論文 参考訳(メタデータ) (2024-12-06T23:43:59Z) - XAI-based Feature Ensemble for Enhanced Anomaly Detection in Autonomous Driving Systems [1.3022753212679383]
本稿では,複数の Explainable AI (XAI) メソッドを統合する新しい機能アンサンブルフレームワークを提案する。
このフレームワークは、6つの多様なAIモデルにまたがって、これらのXAIメソッドによって識別されるトップ機能を融合することによって、異常の検出に不可欠な堅牢で包括的な機能のセットを生成する。
我々の技術は、AIモデルの精度、堅牢性、透明性の向上を示し、より安全で信頼性の高い自動運転システムに貢献します。
論文 参考訳(メタデータ) (2024-10-20T14:34:48Z) - Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AIは、サイバースペースと物理空間のギャップを埋める、急速に進歩する分野だ。
VEANETでは、組み込まれたAIツインが車載AIアシスタントとして機能し、自律運転をサポートするさまざまなタスクを実行する。
論文 参考訳(メタデータ) (2024-10-02T02:20:42Z) - Principal-Agent Reinforcement Learning: Orchestrating AI Agents with Contracts [20.8288955218712]
本稿では,マルコフ決定プロセス(MDP)のエージェントを一連の契約でガイドするフレームワークを提案する。
我々は,主観とエージェントの方針を反復的に最適化するメタアルゴリズムを提示し,分析する。
次に,本アルゴリズムを深層Q-ラーニングで拡張し,近似誤差の存在下での収束度を解析する。
論文 参考訳(メタデータ) (2024-07-25T14:28:58Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
本稿では,自己注意ネットワークのためのパラメータ効率の高いディープアンサンブル手法であるLoRA-Ensembleを紹介する。
全メンバー間で重みを共有できる1つの事前学習型自己注意ネットワークを利用することで、注意投影のために、メンバー固有の低ランク行列を訓練する。
提案手法は明示的なアンサンブルよりも優れたキャリブレーションを示し,様々な予測タスクやデータセットに対して類似あるいは良好な精度を実現する。
論文 参考訳(メタデータ) (2024-05-23T11:10:32Z) - Sampling - Variational Auto Encoder - Ensemble: In the Quest of
Explainable Artificial Intelligence [0.0]
本稿では,新しい枠組みに基づく実証的評価を提示することによって,XAIに関する談話に寄与する。
VAEとアンサンブルスタックとSHapley Additive ExPlanationsを組み合わせたハイブリッドアーキテクチャである。
この発見は、アンサンブルスタック、VAE、SHAPを組み合わせることで、モデルのパフォーマンスが向上するだけでなく、簡単に説明可能なフレームワークを提供できることを示している。
論文 参考訳(メタデータ) (2023-09-25T02:46:19Z) - LAMBO: Large AI Model Empowered Edge Intelligence [71.56135386994119]
次世代エッジインテリジェンスは、オフロード技術を通じて様々なアプリケーションに恩恵をもたらすことが期待されている。
従来のオフロードアーキテクチャは、不均一な制約、部分的な認識、不確実な一般化、トラクタビリティの欠如など、いくつかの問題に直面している。
我々は、これらの問題を解決するための10億以上のパラメータを持つLarge AI Model-Based Offloading (LAMBO)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:25:42Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
オフライン強化学習アルゴリズムを用いて動的メカニズムを設計する。
我々のアルゴリズムは悲観主義の原理に基づいており、オフラインデータセットのカバレッジについて軽度な仮定しか必要としない。
論文 参考訳(メタデータ) (2022-05-05T05:44:26Z) - AI without networks [0.0]
我々は、生成モデリングを取り入れたAIのためのネットワークフリーフレームワークを開発する。
我々は、この枠組みを、民族学、制御理論、数学の3つの異なる分野の例で示す。
また、生成AIによる倫理的法的課題に対処するために、この枠組みに基づいて容易に計算された信用割当手法を提案する。
論文 参考訳(メタデータ) (2021-06-07T05:50:02Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
本稿では,開発とベンチマークを統合した再現性ロボット研究の新しい概念について述べる。
このセットアップの中心的なコンポーネントの1つはDuckietown Autolabであり、これは比較的低コストで再現可能な標準化されたセットアップである。
本研究では,インフラを用いて実施した実験の再現性を解析し,ロボットのハードウェアや遠隔実験室間でのばらつきが低いことを示す。
論文 参考訳(メタデータ) (2020-09-09T15:31:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。