Intelligent Task Scheduling for Microservices via A3C-Based Reinforcement Learning
- URL: http://arxiv.org/abs/2505.00299v1
- Date: Thu, 01 May 2025 04:42:48 GMT
- Title: Intelligent Task Scheduling for Microservices via A3C-Based Reinforcement Learning
- Authors: Yang Wang, Tengda Tang, Zhou Fang, Yingnan Deng, Yifei Duan,
- Abstract summary: This paper proposes an adaptive resource scheduling method based on the A3C reinforcement learning algorithm.<n>The method incorporates an asynchronous multi-threaded learning mechanism, allowing multiple agents to perform parallel sampling and synchronize updates to the global network parameters.<n>The results show that the proposed method delivers high scheduling performance and system stability in multi-task concurrent environments.
- Score: 4.422684054800804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To address the challenges of high resource dynamism and intensive task concurrency in microservice systems, this paper proposes an adaptive resource scheduling method based on the A3C reinforcement learning algorithm. The scheduling problem is modeled as a Markov Decision Process, where policy and value networks are jointly optimized to enable fine-grained resource allocation under varying load conditions. The method incorporates an asynchronous multi-threaded learning mechanism, allowing multiple agents to perform parallel sampling and synchronize updates to the global network parameters. This design improves both policy convergence efficiency and model stability. In the experimental section, a real-world dataset is used to construct a scheduling scenario. The proposed method is compared with several typical approaches across multiple evaluation metrics, including task delay, scheduling success rate, resource utilization, and convergence speed. The results show that the proposed method delivers high scheduling performance and system stability in multi-task concurrent environments. It effectively alleviates the resource allocation bottlenecks faced by traditional methods under heavy load, demonstrating its practical value for intelligent scheduling in microservice systems.
Related papers
- Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks [71.30914500714262]
Cross-layer resource allocation over mobile edge computing (MEC)-aided cell-free networks can sufficiently exploit the transmitting and computing resources to promote the data rate.<n>Joint subcarrier allocation and beamforming optimization are investigated for the MEC-aided cell-free network from the perspective of deep learning.
arXiv Detail & Related papers (2024-12-21T10:18:55Z) - Dependency-Aware CAV Task Scheduling via Diffusion-Based Reinforcement Learning [12.504232513881828]
We propose a novel dependency-aware task scheduling strategy for dynamic unmanned aerial vehicle-assisted connected autonomous vehicles (CAVs)<n>We formulate a joint scheduling priority and subtask assignment optimization problem with the objective of minimizing the average task completion time.<n>We propose a diffusion-based reinforcement learning algorithm, named Synthetic DDQN based Subtasks Scheduling, which can make adaptive task scheduling decision in real time.
arXiv Detail & Related papers (2024-11-27T11:07:31Z) - Online Parallel Multi-Task Relationship Learning via Alternating Direction Method of Multipliers [37.859185005986056]
Online multi-task learning (OMTL) enhances streaming data processing by leveraging the inherent relations among multiple tasks.
This study proposes a novel OMTL framework based on the alternating direction multiplier method (ADMM), a recent breakthrough in optimization suitable for the distributed computing environment.
arXiv Detail & Related papers (2024-11-09T10:20:13Z) - Intent-Aware DRL-Based NOMA Uplink Dynamic Scheduler for IIoT [30.146175299047325]
We investigate the problem of supporting Industrial Internet of Things user equipment (IIoT UEs) with intent (i.e., requested quality of service (QoS)) and random traffic arrival.<n>A deep reinforcement learning (DRL) based centralized dynamic scheduler for time-frequency resources is proposed to learn how to schedule the available communication resources.
arXiv Detail & Related papers (2024-03-27T08:57:15Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Accelerating Exact Combinatorial Optimization via RL-based
Initialization -- A Case Study in Scheduling [1.3053649021965603]
This research aims to develop an innovative approach that employs machine learning (ML) for addressing optimization problems.
We introduce a novel two-phase RL-to-ILP scheduling framework, which includes three steps: 1) solver as coarse-grain scheduler, 2) solution relaxation and 3) exact solving via ILP.
Our framework demonstrates the same scheduling performance compared with using exact scheduling methods while achieving up to 128 $times$ speed improvements.
arXiv Detail & Related papers (2023-08-19T15:52:43Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Distributed Allocation and Scheduling of Tasks with Cross-Schedule
Dependencies for Heterogeneous Multi-Robot Teams [2.294915015129229]
We present a distributed task allocation and scheduling algorithm for missions where the tasks of different robots are tightly coupled with temporal and precedence constraints.
An application of the planning procedure to a practical use case of a greenhouse maintained by a multi-robot system is given.
arXiv Detail & Related papers (2021-09-07T13:44:28Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - An Online Method for A Class of Distributionally Robust Optimization
with Non-Convex Objectives [54.29001037565384]
We propose a practical online method for solving a class of online distributionally robust optimization (DRO) problems.
Our studies demonstrate important applications in machine learning for improving the robustness of networks.
arXiv Detail & Related papers (2020-06-17T20:19:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.