Vehicular Communication Security: Multi-Channel and Multi-Factor Authentication
- URL: http://arxiv.org/abs/2505.00340v1
- Date: Thu, 01 May 2025 06:36:24 GMT
- Title: Vehicular Communication Security: Multi-Channel and Multi-Factor Authentication
- Authors: Marco De Vincenzi, Shuyang Sun, Chen Bo Calvin Zhang, Manuel Garcia, Shaozu Ding, Chiara Bodei, Ilaria Matteucci, Dajiang Suo,
- Abstract summary: Vehicle-to-Infrastructure (V2I) communication plays a key role in enabling mobility-enhancing and safety-critical services.<n>Current V2I authentication relies on credential-based methods over wireless Non-Line-of-Sight (NLOS) channels.<n>We propose a unified Multi-Channel, Multi-Factor Authentication scheme that combines NLOS cryptographic credentials with a Line-of-Sight (LOS) visual channel.
- Score: 7.883758003805773
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Secure and reliable communications are crucial for Intelligent Transportation Systems (ITSs), where Vehicle-to-Infrastructure (V2I) communication plays a key role in enabling mobility-enhancing and safety-critical services. Current V2I authentication relies on credential-based methods over wireless Non-Line-of-Sight (NLOS) channels, leaving them exposed to remote impersonation and proximity attacks. To mitigate these risks, we propose a unified Multi-Channel, Multi-Factor Authentication (MFA) scheme that combines NLOS cryptographic credentials with a Line-of-Sight (LOS) visual channel. Our approach leverages a challenge-response security paradigm: the infrastructure issues challenges and the vehicle's headlights respond by flashing a structured sequence containing encoded security data. Deep learning models on the infrastructure side then decode the embedded information to authenticate the vehicle. Real-world experimental evaluations demonstrate high test accuracy, reaching an average of 95% and 96.6%, respectively, under various lighting, weather, speed, and distance conditions. Additionally, we conducted extensive experiments on three state-of-the-art deep learning models, including detailed ablation studies for decoding the flashing sequence. Our results indicate that the optimal architecture employs a dual-channel design, enabling simultaneous decoding of the flashing sequence and extraction of vehicle spatial and locational features for robust authentication.
Related papers
- T2VShield: Model-Agnostic Jailbreak Defense for Text-to-Video Models [88.63040835652902]
Text to video models are vulnerable to jailbreak attacks, where specially crafted prompts bypass safety mechanisms and lead to the generation of harmful or unsafe content.<n>We propose T2VShield, a comprehensive and model agnostic defense framework designed to protect text to video models from jailbreak threats.<n>Our method systematically analyzes the input, model, and output stages to identify the limitations of existing defenses.
arXiv Detail & Related papers (2025-04-22T01:18:42Z) - Towards Intelligent Transportation with Pedestrians and Vehicles In-the-Loop: A Surveillance Video-Assisted Federated Digital Twin Framework [62.47416496137193]
We propose a surveillance video assisted federated digital twin (SV-FDT) framework to empower ITSs with pedestrians and vehicles in-the-loop.<n>The architecture consists of three layers: (i) the end layer, which collects traffic surveillance videos from multiple sources; (ii) the edge layer, responsible for semantic segmentation-based visual understanding, twin agent-based interaction modeling, and local digital twin system (LDTS) creation in local regions; and (iii) the cloud layer, which integrates LDTSs across different regions to construct a global DT model in realtime.
arXiv Detail & Related papers (2025-03-06T07:36:06Z) - ViFi-ReID: A Two-Stream Vision-WiFi Multimodal Approach for Person Re-identification [3.3743041904085125]
Person re-identification (ReID) plays a vital role in safety inspections, personnel counting, and more.
Most current ReID approaches primarily extract features from images, which are easily affected by objective conditions.
We leverage widely available routers as sensing devices by capturing gait information from pedestrians through the Channel State Information (CSI) in WiFi signals.
arXiv Detail & Related papers (2024-10-13T15:34:11Z) - PLLM-CS: Pre-trained Large Language Model (LLM) for Cyber Threat Detection in Satellite Networks [0.20971479389679332]
Satellite networks are vital in facilitating communication services for various critical infrastructures.
Some of these systems are vulnerable due to the absence of effective intrusion detection systems.
We propose a pretrained Large Language Model for Cyber Security.
arXiv Detail & Related papers (2024-05-09T00:00:27Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - Secure Authentication Mechanism for Cluster based Vehicular Adhoc Network (VANET): A Survey [1.0070449177493677]
Vehicular Ad Hoc Networks (VANETs) play a crucial role in Intelligent Transportation Systems (ITS) by facilitating communication between vehicles and infrastructure.
This survey paper presents a comprehensive analysis of existing authentication mechanisms proposed for cluster-based VANETs.
The integration of secure key management techniques is discussed to enhance the overall authentication process.
arXiv Detail & Related papers (2023-12-20T10:58:43Z) - Federated Learning for Connected and Automated Vehicles: A Survey of
Existing Approaches and Challenges [8.20034065712914]
Machine learning (ML) is widely used for key tasks in Connected and Automated Vehicles (CAV)
Federated learning (FL) is a decentralized ML approach that enables multiple vehicles to collaboratively develop models.
This survey paper presents a review of the advancements made in the application of FL for CAV (FL4CAV)
arXiv Detail & Related papers (2023-08-21T01:21:21Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Safety-Enhanced Autonomous Driving Using Interpretable Sensor Fusion
Transformer [28.15612357340141]
We propose a safety-enhanced autonomous driving framework, named Interpretable Sensor Fusion Transformer(InterFuser)
We process and fuse information from multi-modal multi-view sensors for achieving comprehensive scene understanding and adversarial event detection.
Our framework provides more semantics and are exploited to better constrain actions to be within the safe sets.
arXiv Detail & Related papers (2022-07-28T11:36:21Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.