Validation of a 24-hour-ahead Prediction model for a Residential Electrical Load under diverse climate
- URL: http://arxiv.org/abs/2505.00348v1
- Date: Thu, 01 May 2025 06:48:26 GMT
- Title: Validation of a 24-hour-ahead Prediction model for a Residential Electrical Load under diverse climate
- Authors: Ehtisham Asghar, Martin Hill, Ibrahim Sengor, Conor Lynch, Phan Quang An,
- Abstract summary: This paper proposes a global model for 24-hour-ahead hourly electrical energy demand prediction.<n>It is designed to perform effectively across diverse climate conditions and datasets.<n>It is evaluated against state-of-the-art machine learning and deep learning methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate household electrical energy demand prediction is essential for effectively managing sustainable Energy Communities. Integrated with the Energy Management System, these communities aim to optimise operational costs. However, most existing forecasting models are region-specific and depend on large datasets, limiting their applicability across different climates and geographical areas. These models often lack flexibility and may not perform well in regions with limited historical data, leading to inaccurate predictions. This paper proposes a global model for 24-hour-ahead hourly electrical energy demand prediction that is designed to perform effectively across diverse climate conditions and datasets. The model's efficiency is demonstrated using data from two distinct regions: Ireland, with a maritime climate and Vietnam, with a tropical climate. Remarkably, the model achieves high accuracy even with a limited dataset spanning only nine months. Its robustness is further validated across different seasons in Ireland (summer and winter) and Vietnam (dry and wet). The proposed model is evaluated against state-of-the-art machine learning and deep learning methods. Simulation results indicate that the model consistently outperforms benchmark models, showcasing its capability to provide reliable forecasts globally, regardless of varying climatic conditions and data availability. This research underscores the model's potential to enhance the efficiency and sustainability of Energy Communities worldwide. The proposed model achieves a Mean Absolute Percentage Error of 8.0% and 4.0% on the full Irish and Vietnamese datasets.
Related papers
- Machine Learning-based Regional Cooling Demand Prediction with Optimised Dataset Partitioning [7.745583292171836]
Accurately predicting cooling demand in urban domestic buildings is essential for maintaining energy efficiency.<n>This study introduces a generalised framework for developing high-resolution Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks.
arXiv Detail & Related papers (2025-03-04T12:43:33Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Probabilistic Emulation of a Global Climate Model with Spherical DYffusion [15.460280166612119]
We present the first conditional generative model that produces accurate and physically consistent global climate ensemble simulations.
Our model integrates the dynamics-informed diffusion framework (DYffusion) with the Spherical Fourier Neural Operator (SFNO) architecture.
The model achieves near gold-standard performance for climate model emulation, outperforming existing approaches and demonstrating promising ensemble skill.
arXiv Detail & Related papers (2024-06-21T00:16:55Z) - Efficient mid-term forecasting of hourly electricity load using generalized additive models [0.0]
We propose a novel forecasting method using Generalized Additive Models (GAMs) built from interpretable P-splines.<n>The proposed model is evaluated using load data from 24 European countries over more than 9 years.
arXiv Detail & Related papers (2024-05-27T11:41:41Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Location Agnostic Source-Free Domain Adaptive Learning to Predict Solar
Power Generation [0.0]
This paper proposes a domain adaptive deep learning-based framework to estimate solar power generation using weather features.
A feed-forward deep convolutional network model is trained for a known location dataset in a supervised manner and utilized to predict the solar power of an unknown location later.
Our method has shown an improvement of $10.47 %$, $7.44 %$, $5.11%$ in solar power prediction accuracy compared to best performing non-adaptive method for California (CA), Florida (FL) and New York (NY), respectively.
arXiv Detail & Related papers (2024-01-24T02:08:48Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Loosely Conditioned Emulation of Global Climate Models With Generative
Adversarial Networks [2.937141232326068]
We train two "loosely conditioned" Generative Adversarial Networks (GANs) that emulate daily precipitation output from a fully coupled Earth system model.
GANs are trained to producetemporal samples: 32 days of precipitation over a 64x128 regular grid discretizing the globe.
Our trained GANs can rapidly generate numerous realizations at a vastly reduced computational expense.
arXiv Detail & Related papers (2021-04-29T02:10:08Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.