Machine Learning-based Regional Cooling Demand Prediction with Optimised Dataset Partitioning
- URL: http://arxiv.org/abs/2503.05813v1
- Date: Tue, 04 Mar 2025 12:43:33 GMT
- Title: Machine Learning-based Regional Cooling Demand Prediction with Optimised Dataset Partitioning
- Authors: Meng Zhang, Zhihui Li, Zhibin Yu,
- Abstract summary: Accurately predicting cooling demand in urban domestic buildings is essential for maintaining energy efficiency.<n>This study introduces a generalised framework for developing high-resolution Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks.
- Score: 7.745583292171836
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the context of global warming, even relatively cooler countries like the UK are experiencing a rise in cooling demand, particularly in southern regions such as London. This growing demand, especially during the summer months, presents significant challenges for energy management systems. Accurately predicting cooling demand in urban domestic buildings is essential for maintaining energy efficiency. This study introduces a generalised framework for developing high-resolution Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks using physical model-based summer cooling demand data. To maximise the predictive capability and generalisation ability of the models under limited data scenarios, four distinct data partitioning strategies were implemented, including the extrapolation, month-based interpolation, global interpolation, and day-based interpolation. Bayesian Optimisation (BO) was then applied to fine-tune the hyper-parameters, substantially improving the framework predictive accuracy. Results show that the day-based interpolation GRU model demonstrated the best performance due to its ability to retain both the data randomness and the time sequence continuity characteristics. This optimal model achieves a Root Mean Squared Error (RMSE) of 2.22%, a Mean Absolute Error (MAE) of 0.87%, and a coefficient of determination (R square) of 0.9386 on the test set. The generalisation ability of this framework was further evaluated by forecasting.
Related papers
- Validation of a 24-hour-ahead Prediction model for a Residential Electrical Load under diverse climate [0.0]
This paper proposes a global model for 24-hour-ahead hourly electrical energy demand prediction.
It is designed to perform effectively across diverse climate conditions and datasets.
It is evaluated against state-of-the-art machine learning and deep learning methods.
arXiv Detail & Related papers (2025-05-01T06:48:26Z) - Accurate Prediction of Temperature Indicators in Eastern China Using a Multi-Scale CNN-LSTM-Attention model [0.0]
We propose a weather prediction model based on a multi-scale convolutional CNN-LSTM-Attention architecture.<n>The model integrates Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, and attention mechanisms.<n> Experimental results show that the model performs excellently in predicting temperature trends with high accuracy.
arXiv Detail & Related papers (2024-12-11T00:42:31Z) - Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data.
CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability.
arXiv Detail & Related papers (2024-10-19T03:38:53Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - EWMoE: An effective model for global weather forecasting with mixture-of-experts [6.695845790670147]
We propose EWMoE, an effective model for accurate global weather forecasting, which requires significantly less training data and computational resources.
Our model incorporates three key components to enhance prediction accuracy: 3D absolute position embedding, a core Mixture-of-Experts layer, and two specific loss functions.
arXiv Detail & Related papers (2024-05-09T16:42:13Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Increasing the accuracy and resolution of precipitation forecasts using
deep generative models [3.8073142980733]
We train a conditional Generative Adversarial Network -- coined CorrectorGAN -- to produce ensembles of high-resolution, bias-corrected forecasts.
CorrectorGAN, once trained, produces predictions in seconds on a single machine.
Results raise exciting questions about the necessity of regional models, and whether data-driven downscaling and correction methods can be transferred to data-poor regions.
arXiv Detail & Related papers (2022-03-23T09:45:12Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.