Machine Learning Meets Transparency in Osteoporosis Risk Assessment: A Comparative Study of ML and Explainability Analysis
- URL: http://arxiv.org/abs/2505.00410v1
- Date: Thu, 01 May 2025 09:05:02 GMT
- Title: Machine Learning Meets Transparency in Osteoporosis Risk Assessment: A Comparative Study of ML and Explainability Analysis
- Authors: Farhana Elias, Md Shihab Reza, Muhammad Zawad Mahmud, Samiha Islam,
- Abstract summary: The present research tackles the difficulty of predicting osteoporosis risk via machine learning (ML) approaches.<n>XGBoost had the greatest accuracy (91%) among the evaluated models, surpassing others in precision (0.92), recall (0.91), and F1-score (0.90)<n>The study indicates that age is the primary determinant in forecasting osteoporosis risk, followed by hormonal alterations and familial history.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The present research tackles the difficulty of predicting osteoporosis risk via machine learning (ML) approaches, emphasizing the use of explainable artificial intelligence (XAI) to improve model transparency. Osteoporosis is a significant public health concern, sometimes remaining untreated owing to its asymptomatic characteristics, and early identification is essential to avert fractures. The research assesses six machine learning classifiers: Random Forest, Logistic Regression, XGBoost, AdaBoost, LightGBM, and Gradient Boosting and utilizes a dataset based on clinical, demographic, and lifestyle variables. The models are refined using GridSearchCV to calibrate hyperparameters, with the objective of enhancing predictive efficacy. XGBoost had the greatest accuracy (91%) among the evaluated models, surpassing others in precision (0.92), recall (0.91), and F1-score (0.90). The research further integrates XAI approaches, such as SHAP, LIME, and Permutation Feature Importance, to elucidate the decision-making process of the optimal model. The study indicates that age is the primary determinant in forecasting osteoporosis risk, followed by hormonal alterations and familial history. These results corroborate clinical knowledge and affirm the models' therapeutic significance. The research underscores the significance of explainability in machine learning models for healthcare applications, guaranteeing that physicians can rely on the system's predictions. The report ultimately proposes directions for further research, such as validation across varied populations and the integration of supplementary biomarkers for enhanced predictive accuracy.
Related papers
- Enhancing stroke disease classification through machine learning models via a novel voting system by feature selection techniques [1.2302586529345994]
Heart disease remains a leading cause of morbidity and mortality worldwide.<n>We have developed a novel voting system with feature selection techniques to advance heart disease classification.<n>XGBoost demonstrated exceptional performance, achieving 99% accuracy, precision, F1-Score, 98% recall, and 100% ROC AUC.
arXiv Detail & Related papers (2025-04-01T07:16:49Z) - Machine Learning-Based Model for Postoperative Stroke Prediction in Coronary Artery Disease [0.0]
This study aims to develop and evaluate a sophisticated machine learning prediction model to assess postoperative stroke risk.<n>The dataset has 70% training and 30% test. Numerical values were normalized, whereas categorical variables were one-hot encoded.<n> Logistic Regression, XGBoost, SVM, and CatBoost were employed for predictive modeling, and SHAP analysis assessed stroke risk for each variable.
arXiv Detail & Related papers (2025-03-15T02:50:32Z) - A Foundational Generative Model for Breast Ultrasound Image Analysis [42.618964727896156]
Foundational models have emerged as powerful tools for addressing various tasks in clinical settings.
We present BUSGen, the first foundational generative model specifically designed for breast ultrasound analysis.
With few-shot adaptation, BUSGen can generate repositories of realistic and informative task-specific data.
arXiv Detail & Related papers (2025-01-12T16:39:13Z) - Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment [0.0]
This paper comprehends, assess, and analyze the role, relevance, and efficiency of machine learning models in predicting heart disease risks using clinical data.
The Support Vector Machine (SVM) demonstrates the highest accuracy at 91.51%, confirming its superiority among the evaluated models in terms of predictive capability.
arXiv Detail & Related papers (2024-10-16T22:32:19Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.<n>Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
Heart failure affects millions of people worldwide, significantly reducing quality of life and leading to high mortality rates.
Despite extensive research, the relationship between heart failure and mortality rates among ICU patients is not fully understood.
This study analyzed data from 1,177 patients over 18 years old from the MIMIC-III database, identified using ICD-9 codes.
arXiv Detail & Related papers (2024-09-03T07:57:08Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
Ventilator-associated pneumonia (VAP) in traumatic brain injury (TBI) patients poses a significant mortality risk.
Timely detection and prognostication of VAP in TBI patients are crucial to improve patient outcomes and alleviate the strain on healthcare resources.
We implemented six machine learning models using the MIMIC-III database.
arXiv Detail & Related papers (2024-08-02T09:44:18Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.