論文の概要: ClearLines - Camera Calibration from Straight Lines
- arxiv url: http://arxiv.org/abs/2505.00452v1
- Date: Thu, 01 May 2025 10:55:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.28322
- Title: ClearLines - Camera Calibration from Straight Lines
- Title(参考訳): ClearLines - 直線からのカメラキャリブレーション
- Authors: Gregory Schroeder, Mohamed Sabry, Cristina Olaverri-Monreal,
- Abstract要約: 直線からの校正の問題は幾何学的コンピュータビジョンの基本である。
本研究では,ClearLinesという小さなデータセットを提案する。
生成過程を詳述することにより、直列3次元線検出アルゴリズムの開発と精錬のためのガイドとなる実用的な洞察を提供する。
- 参考スコア(独自算出の注目度): 0.2703659575788132
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of calibration from straight lines is fundamental in geometric computer vision, with well-established theoretical foundations. However, its practical applicability remains limited, particularly in real-world outdoor scenarios. These environments pose significant challenges due to diverse and cluttered scenes, interrupted reprojections of straight 3D lines, and varying lighting conditions, making the task notoriously difficult. Furthermore, the field lacks a dedicated dataset encouraging the development of respective detection algorithms. In this study, we present a small dataset named "ClearLines", and by detailing its creation process, provide practical insights that can serve as a guide for developing and refining straight 3D line detection algorithms.
- Abstract(参考訳): 直線からの校正の問題は幾何学的コンピュータビジョンの基本であり、理論の基礎が確立されている。
しかし、その実用性は、特に現実世界の屋外シナリオにおいて限られている。
これらの環境は、多様で散らばったシーン、直線的な3D線の再計画の中断、照明条件の変化など、重大な課題を生んでいる。
さらに、フィールドには、各検出アルゴリズムの開発を奨励する専用のデータセットが欠けている。
本研究では,「ClearLines」という小さなデータセットを提示し,その生成過程を詳述することにより,直線3次元線検出アルゴリズムの開発と精錬のためのガイドとなる実用的な知見を提供する。
関連論文リスト
- AlignDiff: Learning Physically-Grounded Camera Alignment via Diffusion [0.5277756703318045]
本稿では,カメラ内在パラメータと外在パラメータをジェネリック・レイ・カメラ・モデルを用いて扱う新しいフレームワークを提案する。
従来のアプローチとは異なり、AlignDiffは意味論から幾何学的特徴へ焦点を移し、局所歪みのより正確なモデリングを可能にした。
実験により,提案手法は,推定光束の角誤差を8.2度,全体のキャリブレーション精度で著しく低減し,課題のある実世界のデータセットに対する既存手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2025-03-27T14:59:59Z) - FLARES: Fast and Accurate LiDAR Multi-Range Semantic Segmentation [52.89847760590189]
3Dシーンの理解は、自動運転における重要な課題である。
近年の手法では、レンジビュー表現を利用して処理効率を向上している。
範囲ビューに基づくLiDARセマンティックセマンティックセグメンテーションのためのワークフローを再設計する。
論文 参考訳(メタデータ) (2025-02-13T12:39:26Z) - What Really Matters for Learning-based LiDAR-Camera Calibration [50.2608502974106]
本稿では,学習に基づくLiDAR-Cameraキャリブレーションの開発を再考する。
我々は、広く使われているデータ生成パイプラインによる回帰ベースの手法の限界を識別する。
また,入力データ形式と前処理操作がネットワーク性能に与える影響についても検討する。
論文 参考訳(メタデータ) (2025-01-28T14:12:32Z) - LineGS : 3D Line Segment Representation on 3D Gaussian Splatting [0.0]
LineGSは幾何学誘導型3次元ライン再構成と3次元ガウススプラッティングモデルを組み合わせた新しい手法である。
その結果, ベースライン法と比較して, 幾何精度とモデルコンパクト性に有意な改善が認められた。
論文 参考訳(メタデータ) (2024-11-30T13:29:36Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
本稿では,3次元視覚タスクにおける現在のデータセットの限界について,精度,サイズ,リアリズム,および光度に挑戦する対象に対する適切な画像モダリティの観点から検討する。
既存の3次元認識と6次元オブジェクトポーズデータセットを強化する新しいアノテーションと取得パイプラインを提案する。
論文 参考訳(メタデータ) (2023-08-21T10:38:32Z) - DeepLSD: Line Segment Detection and Refinement with Deep Image Gradients [105.25109274550607]
ラインセグメントは、視覚タスクでますます使われています。
画像勾配に基づく従来の線検出器は非常に高速で精度が高いが、ノイズの多い画像や困難な条件では頑丈さに欠ける。
我々は、両方の世界を最大限に活用するために、伝統的なアプローチと学習されたアプローチを組み合わせることを提案する。
論文 参考訳(メタデータ) (2022-12-15T12:36:49Z) - Normal Transformer: Extracting Surface Geometry from LiDAR Points Enhanced by Visual Semantics [7.507853813361308]
本稿では,LiDARとカメラセンサから得られた3次元点雲と2次元カラー画像を利用して表面正規化を行うマルチモーダル手法を提案する。
本稿では,視覚的意味論と3次元幾何学的情報を巧みに融合した,トランスフォーマーに基づくニューラルネットワークアーキテクチャを提案する。
交通シーンを模倣したシミュレーション3D環境から,提案モデルが学習可能であることが確認された。
論文 参考訳(メタデータ) (2022-11-19T03:55:09Z) - Occlusion-aware Unsupervised Learning of Depth from 4-D Light Fields [50.435129905215284]
4次元光場処理と解析のための教師なし学習に基づく深度推定法を提案する。
光場データの特異な幾何学構造に関する基礎知識に基づいて,光場ビューのサブセット間の角度コヒーレンスを探索し,深度マップを推定する。
提案手法は,従来の手法と同等の精度で計算コストを低減した深度マップを作成できる。
論文 参考訳(メタデータ) (2021-06-06T06:19:50Z) - Lidar-Monocular Surface Reconstruction Using Line Segments [5.542669744873386]
LIDARスキャンと画像データの両方で検出される一般的な幾何学的特徴を利用して、2つのセンサからのデータを高レベル空間で処理することを提案する。
提案手法は, 高精度な地中真理推定を必要とせず, 最先端のLIDARサーベイに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2021-04-06T19:49:53Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
本稿では,これら2つの課題に対処するために,自己教師型LiDARオドメトリー法(SelfVoxeLO)を提案する。
具体的には、生のLiDARデータを直接処理する3D畳み込みネットワークを提案し、3D幾何パターンをよりよく符号化する特徴を抽出する。
我々は,KITTIとApollo-SouthBayという2つの大規模データセット上での手法の性能を評価する。
論文 参考訳(メタデータ) (2020-10-19T09:23:39Z) - Improving Monocular Depth Estimation by Leveraging Structural Awareness
and Complementary Datasets [21.703238902823937]
視覚特徴の空間的関係を利用するために,空間的注意ブロックを有する構造認識ニューラルネットワークを提案する。
第2に,一様点対に対する大域的局所的相対損失を導入し,予測における空間的制約を増大させる。
第3に、先行手法の障害事例の分析に基づいて、挑戦シーンの新たなHard Case (HC) Depthデータセットを収集します。
論文 参考訳(メタデータ) (2020-07-22T08:21:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。