論文の概要: A Diffusion-Model of Joint Interactive Navigation
- arxiv url: http://arxiv.org/abs/2309.12508v2
- Date: Tue, 24 Oct 2023 18:41:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 19:40:18.204546
- Title: A Diffusion-Model of Joint Interactive Navigation
- Title(参考訳): ジョイントインタラクティブナビゲーションの拡散モデル
- Authors: Matthew Niedoba, Jonathan Wilder Lavington, Yunpeng Liu, Vasileios
Lioutas, Justice Sefas, Xiaoxuan Liang, Dylan Green, Setareh Dabiri, Berend
Zwartsenberg, Adam Scibior, Frank Wood
- Abstract要約: 本稿では,交通シナリオを生成する拡散に基づくDJINNを提案する。
我々のアプローチは、過去、現在、未来からのフレキシブルな状態観察のセットに基づいて、全てのエージェントの軌跡を共同で拡散させる。
本稿では,DJINNが様々な条件分布からの直接的テスト時間サンプリングを柔軟に行う方法を示す。
- 参考スコア(独自算出の注目度): 14.689298253430568
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Simulation of autonomous vehicle systems requires that simulated traffic
participants exhibit diverse and realistic behaviors. The use of prerecorded
real-world traffic scenarios in simulation ensures realism but the rarity of
safety critical events makes large scale collection of driving scenarios
expensive. In this paper, we present DJINN - a diffusion based method of
generating traffic scenarios. Our approach jointly diffuses the trajectories of
all agents, conditioned on a flexible set of state observations from the past,
present, or future. On popular trajectory forecasting datasets, we report state
of the art performance on joint trajectory metrics. In addition, we demonstrate
how DJINN flexibly enables direct test-time sampling from a variety of valuable
conditional distributions including goal-based sampling, behavior-class
sampling, and scenario editing.
- Abstract(参考訳): 自動運転車システムのシミュレーションには、シミュレーションされた交通参加者が多様で現実的な行動を示す必要がある。
シミュレーションにおける事前記録された実世界の交通シナリオの使用は、現実主義を保証するが、安全クリティカルイベントの希少さにより、大規模な運転シナリオの収集が高価になる。
本稿では,トラフィックシナリオ生成のための拡散ベース手法であるdjinnを提案する。
提案手法は,過去,現在,未来からの柔軟な状態観測に基づいて,すべてのエージェントの軌道を協調的に拡散させる。
人気トラジェクトリ予測データセットについて,共同トラジェクトリ指標を用いたアートパフォーマンスの現状を報告する。
さらに, DJINNは, 目標ベースサンプリング, 行動クラスサンプリング, シナリオ編集など, 様々な価値条件分布からの直接的テストタイムサンプリングを柔軟に行えるかを示した。
関連論文リスト
- Diffusion-Based Environment-Aware Trajectory Prediction [3.1406146587437904]
自動運転車の安全かつ効率的な運転には、交通参加者の将来の軌跡を予測する能力が不可欠である。
本稿では,多エージェント軌道予測のための拡散モデルを提案する。
このモデルは、交通参加者と環境の間の複雑な相互作用を捉え、データのマルチモーダルな性質を正確に学習することができる。
論文 参考訳(メタデータ) (2024-03-18T10:35:15Z) - Controllable Diverse Sampling for Diffusion Based Motion Behavior
Forecasting [11.106812447960186]
制御可能拡散軌道(CDT)と呼ばれる新しい軌道生成器を導入する。
CDTは、情報と社会的相互作用をトランスフォーマーに基づく条件記述拡散モデルに統合し、将来の軌跡の予測を導く。
マルチモーダル性を確保するため,直進,右折,左折などの軌道モードを指示する行動トークンを組み込んだ。
論文 参考訳(メタデータ) (2024-02-06T13:16:54Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - TrajGen: Generating Realistic and Diverse Trajectories with Reactive and
Feasible Agent Behaviors for Autonomous Driving [19.06020265777298]
既存のシミュレーターは、背景車両のシステムに基づく行動モデルに依存しており、現実のシナリオにおける複雑なインタラクティブな振る舞いを捉えることはできない。
そこで我々は,人間の実演からより現実的な行動を直接捉えることができる2段階の軌道生成フレームワークであるTrajGenを提案する。
また,データ駆動型シミュレータI-Simを開発した。
論文 参考訳(メタデータ) (2022-03-31T04:48:29Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。