論文の概要: Pre-Training Estimators for Structural Models: Application to Consumer Search
- arxiv url: http://arxiv.org/abs/2505.00526v1
- Date: Thu, 01 May 2025 13:51:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.314529
- Title: Pre-Training Estimators for Structural Models: Application to Consumer Search
- Title(参考訳): 構造モデルのための事前学習型推定器:消費者探索への応用
- Authors: Yanhao 'Max' Wei, Zhenling Jiang,
- Abstract要約: 本稿では,推定が困難であることが知られている逐次探索モデルのための事前学習型推定器を構築する。
推定には数秒かかり、精度が高い。
より一般的には、事前訓練されたオフザシェルフ推定器は、研究者や実践者にとって構造モデルをよりアクセスしやすいものにすることができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore pretraining estimators for structural econometric models. The estimator is "pretrained" in the sense that the bulk of the computational cost and researcher effort occur during the construction of the estimator. Subsequent applications of the estimator to different datasets require little computational cost or researcher effort. The estimation leverages a neural net to recognize the structural model's parameter from data patterns. As an initial trial, this paper builds a pretrained estimator for a sequential search model that is known to be difficult to estimate. We evaluate the pretrained estimator on 14 real datasets. The estimation takes seconds to run and shows high accuracy. We provide the estimator at pnnehome.github.io. More generally, pretrained, off-the-shelf estimators can make structural models more accessible to researchers and practitioners.
- Abstract(参考訳): 構造経済学モデルのための事前学習型推定器について検討する。
推定器は、計算コストと研究者の努力の大部分が、推定器の構築中に発生するという意味で「事前訓練」される。
その後の異なるデータセットへの推定器の応用は、計算コストや研究者の努力をほとんど必要としない。
推定はニューラルネットワークを利用して、構造モデルのパラメータをデータパターンから認識する。
最初の試行として,本論文では,推定が困難であることが知られている逐次探索モデルの事前学習推定器を構築した。
14個の実データセットから事前学習した推定器を評価する。
推定には数秒かかり、精度が高い。
pnnehome.github.ioで推定器を提供する。
より一般的には、事前訓練されたオフザシェルフ推定器は、研究者や実践者にとって構造モデルをよりアクセスしやすいものにすることができる。
関連論文リスト
- Efficient Transferability Assessment for Selection of Pre-trained Detectors [63.21514888618542]
本稿では,事前学習対象検出器の効率的な伝達性評価について検討する。
我々は、事前訓練された検出器の大規模で多様な動物園を含む検出器転送性ベンチマークを構築した。
実験により,本手法は伝達性の評価において,他の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-03-14T14:23:23Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Leveraging Variational Autoencoders for Parameterized MMSE Estimation [10.141454378473972]
条件付き線形最小二乗誤差推定器のパラメータ化のための変分オートエンコーダに基づくフレームワークを提案する。
導出した推定器は、推定問題の生成前として変分オートエンコーダを用いて最小平均2乗誤差推定器を近似する。
提案手法と最小平均二乗誤差推定器の差分を限定して厳密な解析を行う。
論文 参考訳(メタデータ) (2023-07-11T15:41:34Z) - A Meta-Learning Approach to Predicting Performance and Data Requirements [163.4412093478316]
本稿では,モデルが目標性能に達するために必要なサンプル数を推定する手法を提案する。
モデル性能を推定するデファクト原理であるパワー法則が,小さなデータセットを使用する場合の誤差が大きいことが判明した。
本稿では,2つのデータを異なる方法で処理するPPL法について紹介する。
論文 参考訳(メタデータ) (2023-03-02T21:48:22Z) - Learning to be a Statistician: Learned Estimator for Number of Distinct
Values [54.629042119819744]
列内の異なる値の数(NDV)を推定することは、データベースシステムにおける多くのタスクに有用である。
本研究では、ランダム(オンライン/オフライン)サンプルから正確なNDV推定を導出する方法に焦点を当てる。
教師付き学習フレームワークにおいて,NDV推定タスクを定式化し,モデルを推定対象として学習することを提案する。
論文 参考訳(メタデータ) (2022-02-06T15:42:04Z) - Optimal and Safe Estimation for High-Dimensional Semi-Supervised
Learning [4.4102422716568235]
本研究では,高次元半教師あり学習における推定問題について考察する。
まず,パラメータ推定のためのミニマックス下限を半教師付き設定で確立する。
この下界に到達可能な最適半教師付き推定器を提案する。
論文 参考訳(メタデータ) (2020-11-28T18:26:46Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
臨床研究者はしばしばリスク予測モデルの中から選択し評価する。
振り返りデータから算出される標準メトリクスは、特定の仮定の下でのみモデルユーティリティに関係します。
予測が時間を通して繰り返し配信される場合、標準メトリクスとユーティリティの関係はさらに複雑になる。
論文 参考訳(メタデータ) (2020-06-02T16:26:49Z) - Model Repair: Robust Recovery of Over-Parameterized Statistical Models [24.319310729283636]
そこでは,データから推定された統計モデルを破損させた統計モデルを復元することが目的である。
モデルを教師付き学習環境に適合させるために使用する応答値ではなく,設計のみを用いてモデルを再ペアリングする手法を提案する。
論文 参考訳(メタデータ) (2020-05-20T08:41:56Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
我々は,同じ形状の複数のパラメトリックモデルを雑音測定に適合させる頑健な推定器を提案する。
複数のモデル検出のための手作り検索戦略を利用する従来の研究とは対照的に,データから検索戦略を学習する。
探索の自己教師付き学習において,提案したアルゴリズムをマルチホログラフィー推定で評価し,最先端手法よりも優れた精度を示す。
論文 参考訳(メタデータ) (2020-01-08T17:37:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。