Hypothesis-free discovery from epidemiological data by automatic detection and local inference for tree-based nonlinearities and interactions
- URL: http://arxiv.org/abs/2505.00571v1
- Date: Thu, 01 May 2025 14:55:22 GMT
- Title: Hypothesis-free discovery from epidemiological data by automatic detection and local inference for tree-based nonlinearities and interactions
- Authors: Giorgio Spadaccini, Marjolein Fokkema, Mark A. van de Wiel,
- Abstract summary: RuleSHAP is a framework for using rule-based, hypothesis-free discovery.<n>We demonstrate the validity of our framework on simulated data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In epidemiological settings, Machine Learning (ML) is gaining popularity for hypothesis-free discovery of risk (or protective) factors. Although ML is strong at discovering non-linearities and interactions, this power is currently compromised by a lack of reliable inference. Although local measures of feature effect can be combined with tree ensembles, uncertainty quantifications for these measures remain only partially available and oftentimes unsatisfactory. We propose RuleSHAP, a framework for using rule-based, hypothesis-free discovery that combines sparse Bayesian regression, tree ensembles and Shapley values in a one-step procedure that both detects and tests complex patterns at the individual level. To ease computation, we derive a formula that computes marginal Shapley values more efficiently for our setting. We demonstrate the validity of our framework on simulated data. To illustrate, we apply our machinery to data from an epidemiological cohort to detect and infer several effects for high cholesterol and blood pressure, such as nonlinear interaction effects between features like age, sex, ethnicity, BMI and glucose level.
Related papers
- Assumption-Lean Post-Integrated Inference with Negative Control Outcomes [0.0]
We introduce a robust post-integrated inference (PII) method that adjusts for latent heterogeneity using negative control outcomes.
Our method extends to projected direct effect estimands, accounting for hidden mediators, confounders, and moderators.
The proposed doubly robust estimators are consistent and efficient under minimal assumptions and potential misspecification.
arXiv Detail & Related papers (2024-10-07T12:52:38Z) - Double Machine Learning meets Panel Data -- Promises, Pitfalls, and Potential Solutions [0.0]
Estimating causal effect using machine learning (ML) algorithms can help to relax functional form assumptions if used within appropriate frameworks.
We show how we can adapt machine learning (DML) for panel data in the presence of unobserved heterogeneity.
We also show that the influence of the unobserved heterogeneity on the observed confounders plays a significant role for the performance of most alternative methods.
arXiv Detail & Related papers (2024-09-02T13:59:54Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - TriSig: Assessing the statistical significance of triclusters [2.064612766965483]
This work proposes a statistical frame to assess the probability of patterns in tensor data to deviate from null expectations.
A comprehensive discussion on binomial testing for false positive discoveries is entailed.
Results gathered from the application of state-of-the-art triclustering algorithms over distinct real-world case studies in biochemical and biotechnological domains.
arXiv Detail & Related papers (2023-06-01T13:08:54Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
We introduce CausalBench, a benchmark suite for evaluating causal inference methods on real-world interventional data.
CaulBench incorporates biologically-motivated performance metrics, including new distribution-based interventional metrics.
arXiv Detail & Related papers (2022-10-31T13:04:07Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - The interventional Bayesian Gaussian equivalent score for Bayesian
causal inference with unknown soft interventions [0.0]
In certain settings, such as genomics, we may have data from heterogeneous study conditions, with soft (partial) interventions only pertaining to a subset of the study variables.
We define the interventional BGe score for a mixture of observational and interventional data, where the targets and effects of intervention may be unknown.
arXiv Detail & Related papers (2022-05-05T12:32:08Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
Since the average treatment effect measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population.
In this paper we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution.
Some bounds can also be interpreted as summarizing a complex CATE function into a single metric and are of interest independently of being a bound.
arXiv Detail & Related papers (2022-01-15T17:21:26Z) - Prediction in the presence of response-dependent missing labels [28.932172873182115]
limitations of sensing technologies result in missing labels in wildfire data.
We develop a new methodology and non-labeled algorithm P(ositive) U(ccurrence) M(agnitude) M(ixture) which jointly estimates the occurrence and detection likelihood of positive samples.
arXiv Detail & Related papers (2021-03-25T01:43:33Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.