論文の概要: Neural Network Verification for Gliding Drone Control: A Case Study
- arxiv url: http://arxiv.org/abs/2505.00622v1
- Date: Thu, 01 May 2025 16:03:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.36425
- Title: Neural Network Verification for Gliding Drone Control: A Case Study
- Title(参考訳): グライディングドローン制御のためのニューラルネットワーク検証 : ケーススタディ
- Authors: Colin Kessler, Ekaterina Komendantskaya, Marco Casadio, Ignazio Maria Viola, Thomas Flinkow, Albaraa Ammar Othman, Alistair Malhotra, Robbie McPherson,
- Abstract要約: ニューラル・ネットワーク・コントローラを用いたOsmitraにインスパイアされたドローンの検証のための新しいケーススタディを提案する。
既存のVNNとARCHの競合ベンチマークとは大きく異なることを示す。
本稿では,回帰ネットワークのロバストトレーニングのための新しい手法を提案し,このケーススタディの車両およびCORAでの形式化について検討する。
- 参考スコア(独自算出の注目度): 0.903415485511869
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As machine learning is increasingly deployed in autonomous systems, verification of neural network controllers is becoming an active research domain. Existing tools and annual verification competitions suggest that soon this technology will become effective for real-world applications. Our application comes from the emerging field of microflyers that are passively transported by the wind, which may have various uses in weather or pollution monitoring. Specifically, we investigate centimetre-scale bio-inspired gliding drones that resemble Alsomitra macrocarpa diaspores. In this paper, we propose a new case study on verifying Alsomitra-inspired drones with neural network controllers, with the aim of adhering closely to a target trajectory. We show that our system differs substantially from existing VNN and ARCH competition benchmarks, and show that a combination of tools holds promise for verifying such systems in the future, if certain shortcomings can be overcome. We propose a novel method for robust training of regression networks, and investigate formalisations of this case study in Vehicle and CORA. Our verification results suggest that the investigated training methods do improve performance and robustness of neural network controllers in this application, but are limited in scope and usefulness. This is due to systematic limitations of both Vehicle and CORA, and the complexity of our system reducing the scale of reachability, which we investigate in detail. If these limitations can be overcome, it will enable engineers to develop safe and robust technologies that improve people's lives and reduce our impact on the environment.
- Abstract(参考訳): 機械学習が自律システムにますます導入されるにつれて、ニューラルネットワークコントローラの検証は活発な研究領域になりつつある。
既存のツールや年次検証コンテストは、この技術がすぐに現実世界のアプリケーションに有効になることを示唆している。
私たちの応用は、風によって受動的に輸送されるマイクロフライアの出現する分野から来ています。
具体的には、オストミトラ・マクロカルパ・ディアスポラに似た、センチメートル規模のバイオインスパイアされたグライディングドローンについて検討する。
本稿では,ニューラルネットコントローラを用いたOsmitraにインスパイアされたドローンの検証を,ターゲット軌道に密着することを目的とした新しいケーススタディを提案する。
我々のシステムは既存のVNNとARCHの競合ベンチマークとは大きく異なり、将来そのようなシステムを検証するためのツールの組み合わせが約束されていることを示す。
本稿では,回帰ネットワークのロバストトレーニングのための新しい手法を提案し,このケーススタディの車両およびCORAでの形式化について検討する。
本研究の検証結果は,ニューラルネットワークコントローラの性能と堅牢性は向上するが,適用範囲と有用性は限定的であることを示唆している。
これは、VanとCORAの両方の体系的な制限と、我々のシステムの複雑さにより、到達可能性の尺度が小さくなるためである。
これらの制限が克服できれば、エンジニアは安全で堅牢な技術を開発し、人々の生活を改善し、環境への影響を減らすことができるでしょう。
関連論文リスト
- Cooperative Search and Track of Rogue Drones using Multiagent Reinforcement Learning [8.775925011558995]
本研究は、機密性の高いインフラ施設をターゲットにしたローグドローンを迎撃する問題を考察する。
ローグドローンを確実に検出・追跡・中和できる総合システムを提案する。
論文 参考訳(メタデータ) (2025-01-07T16:22:51Z) - A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Trackingは、視覚的な観察に基づいてモーションシステムを制御することで、対象物を自律的に追跡することを目的としている。
DATと呼ばれるオープンワールドドローンアクティブトラッキングのためのクロスシーンクロスドメインベンチマークを提案する。
また、R-VATと呼ばれる強化学習に基づくドローン追跡手法を提案する。
論文 参考訳(メタデータ) (2024-12-01T09:37:46Z) - Training on the Fly: On-device Self-supervised Learning aboard Nano-drones within 20 mW [52.280742520586756]
ナノドローンのような小さな機械学習(TinyML)を利用した小型サイバー物理システム(CPS)は、ますます魅力的な技術になりつつある。
単純な電子回路はこれらのCPSを安価にすることができるが、計算、メモリ、センサーの資源を著しく制限する。
本稿では,ナノドロンの限られた超低消費電力資源にのみ依存する,オンデバイスファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2024-08-06T13:11:36Z) - Rethinking Robustness Assessment: Adversarial Attacks on Learning-based Quadrupedal Locomotion Controllers [33.50779001548997]
Legged locomotionは最近、機械学習技術の進歩で顕著な成功を収めた。
学習した移動制御器の弱点を識別するために,逐次的敵攻撃を利用する計算手法を提案する。
我々の研究は、最先端のロバストコントローラーでさえ、十分に設計された低マグニチュード逆数列の下では著しく失敗することを示した。
論文 参考訳(メタデータ) (2024-05-21T00:26:11Z) - VBSF-TLD: Validation-Based Approach for Soft Computing-Inspired Transfer
Learning in Drone Detection [0.0]
本稿では,コンピュータビジョンベースモジュールの不可欠な部分を構成する移動型ドローン検出手法を提案する。
事前学習されたモデルの知識を関連ドメインから活用することにより、限られたトレーニングデータであっても、トランスファー学習によりより良い結果が得られる。
特に、このスキームの有効性は、IOUベースの検証結果によって強調される。
論文 参考訳(メタデータ) (2023-06-11T22:30:23Z) - Exploiting Large Neuroimaging Datasets to Create Connectome-Constrained
Approaches for more Robust, Efficient, and Adaptable Artificial Intelligence [4.998666322418252]
我々は、脳の地図を含む大きなニューロイメージングデータセットを利用するパイプラインを構想する。
我々は,繰り返しるサブサーキットやモチーフの発見手法を開発した。
第3に、チームはフルーツフライコネクトームのメモリ形成の回路を分析し、新しい生成的リプレイアプローチの設計を可能にした。
論文 参考訳(メタデータ) (2023-05-26T23:04:53Z) - Learning Deep Sensorimotor Policies for Vision-based Autonomous Drone
Racing [52.50284630866713]
既存のシステムは、状態推定、計画、制御のために手作業によるコンポーネントを必要とすることが多い。
本稿では、深層感触者ポリシーを学習することで、視覚に基づく自律ドローンレース問題に取り組む。
論文 参考訳(メタデータ) (2022-10-26T19:03:17Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Verifying Learning-Based Robotic Navigation Systems [61.01217374879221]
有効モデル選択に現代検証エンジンをどのように利用できるかを示す。
具体的には、検証を使用して、最適下行動を示す可能性のあるポリシーを検出し、除外する。
我々の研究は、現実世界のロボットにおける準最適DRLポリシーを認識するための検証バックエンドの使用を初めて実証したものである。
論文 参考訳(メタデータ) (2022-05-26T17:56:43Z) - Evolved neuromorphic radar-based altitude controller for an autonomous
open-source blimp [4.350434044677268]
本稿では,ロボット飛行船のためのSNNに基づく高度制御器を提案する。
また、SNNベースのコントローラアーキテクチャ、シミュレーション環境でネットワークをトレーニングするための進化的フレームワーク、現実とのギャップを改善するための制御戦略も提示する。
論文 参考訳(メタデータ) (2021-10-01T20:48:43Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
本稿では,DRLに基づくナビゲーションシステムに対して,選択した時間フレーム上の物理ノイズパターンを妨害することにより,タイミングに基づく逆方向戦略を導入する。
実験結果から, 対向タイミング攻撃は性能低下を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-20T21:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。