Large Language Models Understanding: an Inherent Ambiguity Barrier
- URL: http://arxiv.org/abs/2505.00654v1
- Date: Thu, 01 May 2025 16:55:44 GMT
- Title: Large Language Models Understanding: an Inherent Ambiguity Barrier
- Authors: Daniel N. Nissani,
- Abstract summary: A lively ongoing debate is taking place, since the emergence of Large Language Models (LLMs) with regards to their capability to understand the world.<n>Arguments and counter-arguments have been proposed based upon thought experiments, anecdotal conversations between LLMs and humans, statistical linguistic analysis, philosophical considerations, and more.<n>In this brief paper we present a counter-argument based upon a thought experiment and semi-formal considerations leading to an inherent ambiguity barrier.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A lively ongoing debate is taking place, since the extraordinary emergence of Large Language Models (LLMs) with regards to their capability to understand the world and capture the meaning of the dialogues in which they are involved. Arguments and counter-arguments have been proposed based upon thought experiments, anecdotal conversations between LLMs and humans, statistical linguistic analysis, philosophical considerations, and more. In this brief paper we present a counter-argument based upon a thought experiment and semi-formal considerations leading to an inherent ambiguity barrier which prevents LLMs from having any understanding of what their amazingly fluent dialogues mean.
Related papers
- Contrastive Speaker-Aware Learning for Multi-party Dialogue Generation with LLMs [4.691083532629246]
Multi-party dialogue generation presents significant challenges due to the complex interplay of multiple speakers and interwoven conversational threads.
This paper introduces Speaker-Attentive LLM (SA-LLM), a novel generative model that leverages pre-trained Large Language Models (LLMs) and a speaker-aware contrastive learning strategy to address these challenges.
SA-LLM incorporates a speaker-attributed input encoding and a contrastive learning objective to implicitly learn contextual coherence and speaker roles without explicit relation annotations.
arXiv Detail & Related papers (2025-03-11T19:28:12Z) - Understanding Epistemic Language with a Language-augmented Bayesian Theory of Mind [47.001163099930494]
We introduce a cognitive model of epistemic language interpretation grounded in Bayesian inferences.<n>We validate our model in an experiment where participants watch an agent navigate a maze to find keys hidden in boxes needed to reach their goal, then rate sentences about the agent's beliefs.
arXiv Detail & Related papers (2024-08-21T22:29:56Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
We propose Counterfactual Inception, a novel method that implants counterfactual thinking into Large Multi-modal Models.
We aim for the models to engage with and generate responses that span a wider contextual scene understanding.
Comprehensive analyses across various LMMs, including both open-source and proprietary models, corroborate that counterfactual thinking significantly reduces hallucination.
arXiv Detail & Related papers (2024-03-20T11:27:20Z) - Sibyl: Empowering Empathetic Dialogue Generation in Large Language Models via Sensible and Visionary Commonsense Inference [40.96005200292604]
We present an innovative framework named Sensible and Visionary Commonsense Knowledge (Sibyl)<n>It is designed to concentrate on the immediately succeeding dialogue, aiming to elicit more empathetic responses.<n> Experimental results demonstrate that incorporating our paradigm for acquiring commonsense knowledge into LLMs comprehensively enhances the quality of their responses.
arXiv Detail & Related papers (2023-11-26T14:35:23Z) - DDCoT: Duty-Distinct Chain-of-Thought Prompting for Multimodal Reasoning
in Language Models [28.712359821231182]
Large language models (LLMs) have made remarkable strides in such multi-step reasoning on the language modality solely by leveraging the chain of thought (CoT) to mimic human thinking.
The transfer of these advancements to multimodal contexts introduces heightened challenges, including but not limited to the impractical need for labor-intensive annotation.
This study proposes a novel DDCoT prompting that maintains a critical attitude through negative-space prompting and incorporates multimodality into reasoning.
arXiv Detail & Related papers (2023-10-25T08:03:10Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
We propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution.
Our framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation.
arXiv Detail & Related papers (2023-05-30T15:25:45Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
arXiv Detail & Related papers (2023-05-24T07:33:34Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
We present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer.
Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks.
Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate.
arXiv Detail & Related papers (2023-05-23T17:55:11Z) - Prompting and Evaluating Large Language Models for Proactive Dialogues:
Clarification, Target-guided, and Non-collaboration [72.04629217161656]
This work focuses on three aspects of proactive dialogue systems: clarification, target-guided, and non-collaborative dialogues.
To trigger the proactivity of LLMs, we propose the Proactive Chain-of-Thought prompting scheme.
arXiv Detail & Related papers (2023-05-23T02:49:35Z) - Examining Inter-Consistency of Large Language Models Collaboration: An
In-depth Analysis via Debate [41.949869545423375]
Large Language Models (LLMs) have shown impressive capabilities in various applications, but they still face various inconsistency issues.
To examine whether LLMs can collaborate effectively to achieve a consensus for a shared goal, we focus on commonsense reasoning.
Our work contributes to understanding the inter-consistency among LLMs and lays the foundation for developing future collaboration methods.
arXiv Detail & Related papers (2023-05-19T11:15:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.