Offset Charge Dependence of Measurement-Induced Transitions in Transmons
- URL: http://arxiv.org/abs/2505.00674v1
- Date: Thu, 01 May 2025 17:28:57 GMT
- Title: Offset Charge Dependence of Measurement-Induced Transitions in Transmons
- Authors: Mathieu Féchant, Marie Frédérique Dumas, Denis Bénâtre, Nicolas Gosling, Philipp Lenhard, Martin Spiecker, Wolfgang Wernsdorfer, Benjamin D'Anjou, Alexandre Blais, Ioan M. Pop,
- Abstract summary: A major limitation in improving qubit readout is measurement-induced transitions.<n>We experimentally confirm a prediction by characterizing measurement-induced transitions with increasing resonator photon population.<n>Because highly excited states are involved, achieving quantitative agreement between theory and experiment requires accounting for higher-order harmonics.
- Score: 32.73124984242397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A key challenge in achieving scalable fault tolerance in superconducting quantum processors is readout fidelity, which lags behind one- and two-qubit gate fidelity. A major limitation in improving qubit readout is measurement-induced transitions, also referred to as qubit ionization, caused by multiphoton qubit-resonator excitation occurring at specific photon numbers. Since ionization can involve highly excited states, it has been predicted that in transmons -- the most widely used superconducting qubit -- the photon number at which measurement-induced transitions occur is gate charge dependent. This dependence is expected to persist deep in the transmon regime where the qubit frequency is gate charge insensitive. We experimentally confirm this prediction by characterizing measurement-induced transitions with increasing resonator photon population while actively stabilizing the transmon's gate charge. Furthermore, because highly excited states are involved, achieving quantitative agreement between theory and experiment requires accounting for higher-order harmonics in the transmon Hamiltonian.
Related papers
- Probing excited-state dynamics of transmon ionization [47.00361052400629]
We study the excited-state dynamics induced by strong drives during readout in circuit QED.<n>With up to 10 resolvable states, we quantify the critical photon number of ionization, the resulting state after ionization, and the fraction of the population transferred to highly excited states.
arXiv Detail & Related papers (2025-05-01T16:28:03Z) - Robustness of longitudinal transmon readout to ionization [79.16635054977068]
Multi-photon processes deteriorate the quantum non-demolition character of the dispersive readout in circuit QED.<n>Alternative methods such as the longitudinal readout have been proposed.<n>We show that fast, high-fidelity QND readout of transmon qubits is possible with longitudinal coupling.
arXiv Detail & Related papers (2024-12-10T18:32:30Z) - Measurement-Induced Transmon Ionization [69.65384453064829]
We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
arXiv Detail & Related papers (2024-02-09T18:46:50Z) - Quantum criticality of bandwidth-controlled Mott transition [0.0]
Metallic states near the Mott insulator show a variety of quantum phases including various magnetic, charge ordered states and high-temperature superconductivity.
The quantum criticality is, however, not well understood when the transition is controlled by the bandwidth through physical parameters such as pressure.
arXiv Detail & Related papers (2023-02-28T14:48:33Z) - Measurement-Induced State Transitions in a Superconducting Qubit: Within
the Rotating Wave Approximation [33.65845920594661]
We study resonant transitions between levels in the coupled qubit-resonator system that exhibit noisy behavior when measured repeatedly in time.
Our results suggest the transmon is excited to levels near the top of its cosine potential following a state transition.
arXiv Detail & Related papers (2022-12-09T19:48:55Z) - Amplification of cascaded downconversion by reusing photons with a
switchable cavity [62.997667081978825]
We propose a scheme to amplify triplet production rates by using a fast switch and a delay loop.
Our proof-of-concept device increases the rate of detected photon triplets as predicted.
arXiv Detail & Related papers (2022-09-23T15:53:44Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.