Quasiparticle-induced decoherence of a driven superconducting qubit
- URL: http://arxiv.org/abs/2505.00769v1
- Date: Thu, 01 May 2025 18:00:42 GMT
- Title: Quasiparticle-induced decoherence of a driven superconducting qubit
- Authors: Mykola Kishmar, Pavel D. Kurilovich, Andrey Klots, Thomas Connolly, Igor L. Aleiner, Vladislav D. Kurilovich,
- Abstract summary: We develop a theory for two quasiparticle-induced decoherence mechanisms of a driven superconducting qubit.<n>In the first mechanism, an existing quasiparticle (QP) tunnels across the qubit's Josephson junction while simultaneously absorbing a qubit excitation and one (or several) photons from the drive.<n>In the second mechanism, a qubit transition occurs during the non-linear absorption process converting multiple drive quanta into a pair of new QPs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a theory for two quasiparticle-induced decoherence mechanisms of a driven superconducting qubit. In the first mechanism, an existing quasiparticle (QP) tunnels across the qubit's Josephson junction while simultaneously absorbing a qubit excitation and one (or several) photons from the drive. In the second mechanism, a qubit transition occurs during the non-linear absorption process converting multiple drive quanta into a pair of new QPs. Both mechanisms can remain significant in gap engineered qubits whose coherence is insensitive to QPs without the drive. Our theory establishes a fundamental limitation on fidelity of the microwave qubit operations, such as readout and gates, stemming from QPs.
Related papers
- Theory of Quasiparticle Generation by Microwave Drives in Superconducting Qubits [0.24091079613649843]
Microwave drives are commonly employed to control superconducting quantum circuits.<n>We present a theoretical framework for calculating the rates of multi-photon-assisted pair-breaking transitions induced by microwave drives.
arXiv Detail & Related papers (2025-05-01T18:07:13Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Suppression of quasiparticle poisoning in transmon qubits by gap engineering [0.0]
Inelastic quasiparticle tunneling across Josephson junctions in superconducting qubits results in decoherence and spurious excitations.
We use "gap engineering" to suppress the tunneling of low-energy quasiparticles in Al-based transmon qubits.
The suppression of QP tunneling also results in a reduction in the qubit energy relaxation rates.
arXiv Detail & Related papers (2023-09-06T01:59:53Z) - Distinguishing parity-switching mechanisms in a superconducting qubit [0.0]
We measure the flux dependence of charge-parity switching in an offset-charge-sensitive transmon qubit.
We find that the photon-assisted process contributes significantly to both parity switching and the generation of excess QPs.
arXiv Detail & Related papers (2022-04-15T13:37:07Z) - Quasiparticle Poisoning of Superconducting Qubits from Resonant
Absorption of Pair-breaking Photons [0.0]
We show that a dominant mechanism for quasiparticle poisoning in superconducting qubits is direct absorption of high-energy photons at the qubit junction.
A deep understanding of this physics will pave the way to realization of next-generation superconducting qubits.
arXiv Detail & Related papers (2022-03-13T05:54:28Z) - Non-reciprocal Pauli Spin Blockade in a Silicon Double Quantum Dot [2.1244966990202903]
We present an experimental observation of a new, highly prevalent PSB-lifting mechanism in a silicon double quantum dot.
We find the mechanism to be energy-level selective and non-reciprocal for neighbouring charge configurations.
arXiv Detail & Related papers (2021-10-19T10:54:27Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits [68.8204255655161]
We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
arXiv Detail & Related papers (2021-06-09T16:21:31Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.