論文の概要: Reasoning Capabilities and Invariability of Large Language Models
- arxiv url: http://arxiv.org/abs/2505.00776v1
- Date: Thu, 01 May 2025 18:12:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-05 17:21:19.787624
- Title: Reasoning Capabilities and Invariability of Large Language Models
- Title(参考訳): 大規模言語モデルの推論能力と不変性
- Authors: Alessandro Raganato, Rafael Peñaloza, Marco Viviani, Gabriella Pasi,
- Abstract要約: 我々は,大規模言語モデルの推論能力に関する総合的な分析を行うことを目標としている。
我々は、浅い論理的推論を要求する一連の単純な推論質問を含む新しいベンチマークデータセットを導入する。
ゼロショットと少数ショットを含む実証分析では、70億以上のパラメータを持つLDMがゼロショット設定でより優れた性能を発揮する一方で、改善の余地がまだ大きいことが示されている。
- 参考スコア(独自算出の注目度): 49.23570751696334
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) have shown remarkable capabilities in manipulating natural language across multiple applications, but their ability to handle simple reasoning tasks is often questioned. In this work, we aim to provide a comprehensive analysis of LLMs' reasoning competence, specifically focusing on their prompt dependency. In particular, we introduce a new benchmark dataset with a series of simple reasoning questions demanding shallow logical reasoning. Aligned with cognitive psychology standards, the questions are confined to a basic domain revolving around geometric figures, ensuring that responses are independent of any pre-existing intuition about the world and rely solely on deduction. An empirical analysis involving zero-shot and few-shot prompting across 24 LLMs of different sizes reveals that, while LLMs with over 70 billion parameters perform better in the zero-shot setting, there is still a large room for improvement. An additional test with chain-of-thought prompting over 22 LLMs shows that this additional prompt can aid or damage the performance of models, depending on whether the rationale is required before or after the answer.
- Abstract(参考訳): 大規模言語モデル(LLM)は、複数のアプリケーションにわたって自然言語を操作する際、顕著な能力を示しているが、単純な推論タスクを扱う能力は疑問視されることが多い。
本研究は,LLMの推論能力について,特に素早い依存性に着目した包括的分析を行うことを目的とする。
特に、浅い論理的推論を必要とする一連の単純な推論問題を含む新しいベンチマークデータセットを導入する。
認知心理学の基準に従って、質問は幾何学的図形を中心に展開する基本的な領域に限られており、応答が既存の世界の直観とは独立しており、推論のみに依存していることを保証している。
ゼロショットと少数ショットを含む実証分析では、70億以上のパラメータを持つLDMがゼロショット設定でより優れた性能を発揮する一方で、改善の余地がまだ大きいことが示されている。
チェーン・オブ・シークレットによる22 LLM以上の追加テストは、この追加のプロンプトが、答の前後で合理性が必要なかどうかによって、モデルの性能を援助または損なう可能性があることを示している。
関連論文リスト
- Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
大規模言語モデル(LLM)は、自然言語処理タスクの増大に対して、テキスト埋め込みを急速に改善した。
質問応答埋め込み (QA-Emb) を導入し, 各特徴がLLMに対して質問された質問に対する回答を表す。
我々はQA-Embを用いて、言語刺激に対するfMRIボクセル応答を予測するための解釈可能なモデルを柔軟に生成する。
論文 参考訳(メタデータ) (2024-05-26T22:30:29Z) - Optimizing Language Model's Reasoning Abilities with Weak Supervision [48.60598455782159]
弱い教師付きベンチマークであるtextscPuzzleBen について,25,147 の複雑な質問,回答,人為的合理性からなる。
データセットのユニークな側面は、10,000の未注釈の質問を含めることであり、LLMの推論能力を高めるために、より少ないスーパーサイズのデータを活用することができる。
論文 参考訳(メタデータ) (2024-05-07T07:39:15Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - You don't need a personality test to know these models are unreliable: Assessing the Reliability of Large Language Models on Psychometric Instruments [37.03210795084276]
本稿では, 大規模言語モデルが応答を一貫した, 頑健な方法で引き起こすかどうかを考察する。
17種類のLDM実験により,単純な摂動でさえモデルの問合せ能力を大幅に低下させることが判明した。
その結果,現在広く普及しているプロンプトは,モデル知覚を正確にかつ確実に捉えるには不十分であることが示唆された。
論文 参考訳(メタデータ) (2023-11-16T09:50:53Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
既成のLarge Language Models (LLM) の推論能力を高めるため, 単純で汎用的で効果的なプロンプト手法であるRe2を導入する。
CoT (Chain-of-Thought) など、ほとんどの思考を刺激する手法とは異なり、Re2 は質問を2回処理することで入力に焦点を移し、理解プロセスを強化する。
提案手法の有効性と汎用性を検証するため,14のデータセットにまたがる広範囲な推論ベンチマークでRe2を評価した。
論文 参考訳(メタデータ) (2023-09-12T14:36:23Z) - Large Language Models are Zero-Shot Reasoners [28.6899375595088]
思考の連鎖(CoT)プロンプトは、ステップバイステップの回答例を通して複雑な多段階推論を引き出す手法である。
LLMは、各回答の前に単に「ステップバイステップ」を追加して、まともなゼロショット推論子であることを示す。
実験結果から,同一のプロンプトテンプレートを用いたZero-shot-CoTはゼロショットLLM性能を著しく上回ることがわかった。
論文 参考訳(メタデータ) (2022-05-24T09:22:26Z) - Selection-Inference: Exploiting Large Language Models for Interpretable
Logical Reasoning [14.663216851932646]
言語モデルは1ステップの推論タスクでかなりうまく機能する傾向があるが、より複雑な問題を解決するために複数の推論ステップをチェーン化するのに苦労している。
本稿では,事前学習したLLMを汎用処理モジュールとして活用する選択推論(SI)フレームワークを提案する。
5ショットの一般化設定でSIフレームワーク内で使用する 7B パラメータ LLM が微調整なしで,100% 以上の性能向上が得られることを示す。
論文 参考訳(メタデータ) (2022-05-19T17:25:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。