Uncertainty-aware Latent Safety Filters for Avoiding Out-of-Distribution Failures
- URL: http://arxiv.org/abs/2505.00779v1
- Date: Thu, 01 May 2025 18:18:17 GMT
- Title: Uncertainty-aware Latent Safety Filters for Avoiding Out-of-Distribution Failures
- Authors: Junwon Seo, Kensuke Nakamura, Andrea Bajcsy,
- Abstract summary: We introduce an uncertainty-aware latent safety filter that proactively steers robots away from both known and unseen failures.<n>We show that our uncertainty-aware safety filter preemptively detects potential unsafe scenarios and reliably proposes safe, in-distribution actions.
- Score: 7.0540936204654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in generative world models have enabled classical safe control methods, such as Hamilton-Jacobi (HJ) reachability, to generalize to complex robotic systems operating directly from high-dimensional sensor observations. However, obtaining comprehensive coverage of all safety-critical scenarios during world model training is extremely challenging. As a result, latent safety filters built on top of these models may miss novel hazards and even fail to prevent known ones, overconfidently misclassifying risky out-of-distribution (OOD) situations as safe. To address this, we introduce an uncertainty-aware latent safety filter that proactively steers robots away from both known and unseen failures. Our key idea is to use the world model's epistemic uncertainty as a proxy for identifying unseen potential hazards. We propose a principled method to detect OOD world model predictions by calibrating an uncertainty threshold via conformal prediction. By performing reachability analysis in an augmented state space-spanning both the latent representation and the epistemic uncertainty-we synthesize a latent safety filter that can reliably safeguard arbitrary policies from both known and unseen safety hazards. In simulation and hardware experiments on vision-based control tasks with a Franka manipulator, we show that our uncertainty-aware safety filter preemptively detects potential unsafe scenarios and reliably proposes safe, in-distribution actions. Video results can be found on the project website at https://cmu-intentlab.github.io/UNISafe
Related papers
- Towards provable probabilistic safety for scalable embodied AI systems [79.31011047593492]
Embodied AI systems are increasingly prevalent across various applications.<n> Ensuring their safety in complex operating environments remains a major challenge.<n>This Perspective offers a pathway toward safer, large-scale adoption of embodied AI systems in safety-critical applications.
arXiv Detail & Related papers (2025-06-05T15:46:25Z) - Shape it Up! Restoring LLM Safety during Finetuning [66.46166656543761]
Finetuning large language models (LLMs) enables user-specific customization but introduces critical safety risks.<n>We propose dynamic safety shaping (DSS), a framework that uses fine-grained safety signals to reinforce learning from safe segments of a response while suppressing unsafe content.<n>We present STAR-DSS, guided by STAR scores, that robustly mitigates finetuning risks and delivers substantial safety improvements across diverse threats, datasets, and model families.
arXiv Detail & Related papers (2025-05-22T18:05:16Z) - Generalizing Safety Beyond Collision-Avoidance via Latent-Space Reachability Analysis [6.267574471145217]
Hamilton-Jacobi (H) reachability is a rigorous framework that enables robots to simultaneously detect unsafe states and generate actions.<n>We propose La Safety Filters, a latent-space reachability that operates directly on raw observation data.
arXiv Detail & Related papers (2025-02-02T22:00:20Z) - SafetyAnalyst: Interpretable, transparent, and steerable safety moderation for AI behavior [56.10557932893919]
We present SafetyAnalyst, a novel AI safety moderation framework.<n>Given an AI behavior, SafetyAnalyst uses chain-of-thought reasoning to analyze its potential consequences.<n>It aggregates all harmful and beneficial effects into a harmfulness score using fully interpretable weight parameters.
arXiv Detail & Related papers (2024-10-22T03:38:37Z) - Anomalous State Sequence Modeling to Enhance Safety in Reinforcement Learning [0.0]
We propose a safe reinforcement learning (RL) approach that utilizes an anomalous state sequence to enhance RL safety.
In experiments on multiple safety-critical environments including self-driving cars, our solution approach successfully learns safer policies.
arXiv Detail & Related papers (2024-07-29T10:30:07Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position.<n>DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful response sequence.
arXiv Detail & Related papers (2024-07-12T09:36:33Z) - Safe Inputs but Unsafe Output: Benchmarking Cross-modality Safety Alignment of Large Vision-Language Model [73.8765529028288]
We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment.<n>To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations.<n>Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios.
arXiv Detail & Related papers (2024-06-21T16:14:15Z) - ISAACS: Iterative Soft Adversarial Actor-Critic for Safety [0.9217021281095907]
This work introduces a novel approach enabling scalable synthesis of robust safety-preserving controllers for robotic systems.
A safety-seeking fallback policy is co-trained with an adversarial "disturbance" agent that aims to invoke the worst-case realization of model error.
While the learned control policy does not intrinsically guarantee safety, it is used to construct a real-time safety filter.
arXiv Detail & Related papers (2022-12-06T18:53:34Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity.
As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner.
On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches.
arXiv Detail & Related papers (2022-10-03T08:38:38Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - ProBF: Learning Probabilistic Safety Certificates with Barrier Functions [31.203344483485843]
The control barrier function is a useful tool to guarantee safety if we have access to the ground-truth system dynamics.
In practice, we have inaccurate knowledge of the system dynamics, which can lead to unsafe behaviors.
We show the efficacy of this method through experiments on Segway and Quadrotor simulations.
arXiv Detail & Related papers (2021-12-22T20:18:18Z) - Safe reinforcement learning for probabilistic reachability and safety
specifications: A Lyapunov-based approach [2.741266294612776]
We propose a model-free safety specification method that learns the maximal probability of safe operation.
Our approach constructs a Lyapunov function with respect to a safe policy to restrain each policy improvement stage.
It yields a sequence of safe policies that determine the range of safe operation, called the safe set.
arXiv Detail & Related papers (2020-02-24T09:20:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.