Generalizing Safety Beyond Collision-Avoidance via Latent-Space Reachability Analysis
- URL: http://arxiv.org/abs/2502.00935v3
- Date: Wed, 30 Apr 2025 23:43:52 GMT
- Title: Generalizing Safety Beyond Collision-Avoidance via Latent-Space Reachability Analysis
- Authors: Kensuke Nakamura, Lasse Peters, Andrea Bajcsy,
- Abstract summary: Hamilton-Jacobi (H) reachability is a rigorous framework that enables robots to simultaneously detect unsafe states and generate actions.<n>We propose La Safety Filters, a latent-space reachability that operates directly on raw observation data.
- Score: 6.267574471145217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hamilton-Jacobi (HJ) reachability is a rigorous mathematical framework that enables robots to simultaneously detect unsafe states and generate actions that prevent future failures. While in theory, HJ reachability can synthesize safe controllers for nonlinear systems and nonconvex constraints, in practice, it has been limited to hand-engineered collision-avoidance constraints modeled via low-dimensional state-space representations and first-principles dynamics. In this work, our goal is to generalize safe robot controllers to prevent failures that are hard--if not impossible--to write down by hand, but can be intuitively identified from high-dimensional observations: for example, spilling the contents of a bag. We propose Latent Safety Filters, a latent-space generalization of HJ reachability that tractably operates directly on raw observation data (e.g., RGB images) to automatically compute safety-preserving actions without explicit recovery demonstrations by performing safety analysis in the latent embedding space of a generative world model. Our method leverages diverse robot observation-action data of varying quality (including successes, random exploration, and unsafe demonstrations) to learn a world model. Constraint specification is then transformed into a classification problem in the latent space of the learned world model. In simulation and hardware experiments, we compute an approximation of Latent Safety Filters to safeguard arbitrary policies (from imitation- learned policies to direct teleoperation) from complex safety hazards, like preventing a Franka Research 3 manipulator from spilling the contents of a bag or toppling cluttered objects.
Related papers
- Designing Control Barrier Function via Probabilistic Enumeration for Safe Reinforcement Learning Navigation [55.02966123945644]
We propose a hierarchical control framework leveraging neural network verification techniques to design control barrier functions (CBFs) and policy correction mechanisms.
Our approach relies on probabilistic enumeration to identify unsafe regions of operation, which are then used to construct a safe CBF-based control layer.
These experiments demonstrate the ability of the proposed solution to correct unsafe actions while preserving efficient navigation behavior.
arXiv Detail & Related papers (2025-04-30T13:47:25Z) - Safe Reinforcement Learning on the Constraint Manifold: Theory and Applications [21.98309272057848]
We show how we can impose complex safety constraints on learning-based robotics systems in a principled manner.
Our approach is based on the concept of the Constraint Manifold, representing the set of safe robot configurations.
We demonstrate the method's effectiveness in a real-world Robot Air Hockey task.
arXiv Detail & Related papers (2024-04-13T20:55:15Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Approximate Shielding of Atari Agents for Safe Exploration [83.55437924143615]
We propose a principled algorithm for safe exploration based on the concept of shielding.
We present preliminary results that show our approximate shielding algorithm effectively reduces the rate of safety violations.
arXiv Detail & Related papers (2023-04-21T16:19:54Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
We propose a control filter that wraps any reference policy and effectively encourages the system to stay in-distribution with respect to offline-collected safe demonstrations.
Our method is effective for two different visuomotor control tasks in simulation environments, including both top-down and egocentric view settings.
arXiv Detail & Related papers (2023-01-27T22:28:19Z) - ISAACS: Iterative Soft Adversarial Actor-Critic for Safety [0.9217021281095907]
This work introduces a novel approach enabling scalable synthesis of robust safety-preserving controllers for robotic systems.
A safety-seeking fallback policy is co-trained with an adversarial "disturbance" agent that aims to invoke the worst-case realization of model error.
While the learned control policy does not intrinsically guarantee safety, it is used to construct a real-time safety filter.
arXiv Detail & Related papers (2022-12-06T18:53:34Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity.
As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner.
On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches.
arXiv Detail & Related papers (2022-10-03T08:38:38Z) - USC: Uncompromising Spatial Constraints for Safety-Oriented 3D Object Detectors in Autonomous Driving [7.355977594790584]
We consider the safety-oriented performance of 3D object detectors in autonomous driving contexts.
We present uncompromising spatial constraints (USC), which characterize a simple yet important localization requirement.
We incorporate the quantitative measures into common loss functions to enable safety-oriented fine-tuning for existing models.
arXiv Detail & Related papers (2022-09-21T14:03:08Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Safe Reinforcement Learning Using Black-Box Reachability Analysis [20.875010584486812]
Reinforcement learning (RL) is capable of sophisticated motion planning and control for robots in uncertain environments.
To justify widespread deployment, robots must respect safety constraints without sacrificing performance.
We propose a Black-box Reachability-based Safety Layer (BRSL) with three main components.
arXiv Detail & Related papers (2022-04-15T10:51:09Z) - Safety-aware Policy Optimisation for Autonomous Racing [17.10371721305536]
We introduce Hamilton-Jacobi (HJ) reachability theory into the constrained Markov decision process (CMDP) framework.
We demonstrate that the HJ safety value can be learned directly on vision context.
We evaluate our method on several benchmark tasks, including Safety Gym and Learn-to-Race (L2R), a recently-released high-fidelity autonomous racing environment.
arXiv Detail & Related papers (2021-10-14T20:15:45Z) - Safe reinforcement learning for probabilistic reachability and safety
specifications: A Lyapunov-based approach [2.741266294612776]
We propose a model-free safety specification method that learns the maximal probability of safe operation.
Our approach constructs a Lyapunov function with respect to a safe policy to restrain each policy improvement stage.
It yields a sequence of safe policies that determine the range of safe operation, called the safe set.
arXiv Detail & Related papers (2020-02-24T09:20:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.