Path-Integral Approach to Quantum Acoustics
- URL: http://arxiv.org/abs/2505.00861v2
- Date: Fri, 16 May 2025 13:23:24 GMT
- Title: Path-Integral Approach to Quantum Acoustics
- Authors: Joost V. de Nijs, Anton M. Graf, Eric J. Heller, Joonas Keski-Rahkonen,
- Abstract summary: We introduce a long neglected but essential wave paradigm for lattice vibrations.<n>Within the coherent state picture, we formulate a non-Markovian, master equation that captures the exact dynamics of any system.<n>We demonstrate the capability of the presented master equation by applying the corresponding procedure to the eminent Fr"ohlich model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A path-integral approach to quantum acoustics is developed here. In contrast to the commonly utilized particle perspective, this emerging field brings forth a long neglected but essential wave paradigm for lattice vibrations. Within the coherent state picture, we formulate a non-Markovian, stochastic master equation that captures the exact dynamics of any system with coupling linear in the bath coordinates and nonlinear in the system coordinates. We further demonstrate the capability of the presented master equation by applying the corresponding procedure to the eminent Fr\"ohlich model. In general, we establish a solid foundation for quantum acoustics as a kindred framework to quantum optics, while paving the way for deeper first-principle explorations of non-perturbative system dynamics driven by lattice vibrations.
Related papers
- Universality of stochastic control of quantum chaos with measurement and feedback [0.0]
We investigate quantum dynamics in an unstable fixed point subjected to control.<n>Recent studies reveal that this interplay underlies a family of measurement- and feedback-driven dynamical quantum phase transitions.<n>By combining numerical simulations, a semiclassical Fokker-Planck analysis, and direct spectra of the quantum channel, we map out the control transition.
arXiv Detail & Related papers (2025-06-11T18:00:01Z) - Mixed Quantum-Classical Dynamics Yields Anharmonic Rabi Oscillations [0.0]
We analytically show an approach to yield persistent yet anharmonic Rabi oscillations governed by an undamped and unforced Duffing equation.<n>Our findings provide guidance in the application of MQC dynamics to classes of problems involving small quantum numbers.
arXiv Detail & Related papers (2025-02-09T04:00:45Z) - The Sound of Decoherence [0.0]
This document serves as a companion to the corresponding audio visual simulations of these models available on the YouTube channel Open Quantum Sonification with the Python Codes on GitHub.
arXiv Detail & Related papers (2024-12-22T14:55:25Z) - Linear-scale simulations of quench dynamics [2.7615495205203318]
We develop a linear-scale computational simulation technique for the non-equilibrium dynamics of quantum quench systems.
An expansion-based method allows us to efficiently compute the Loschmidt echo for infinitely large systems.
We observe wave vector-independent dynamical phase transitions in self-dual localization models.
arXiv Detail & Related papers (2023-11-16T04:18:32Z) - Macroscopic quantum entanglement between an optomechanical cavity and a
continuous field in presence of non-Markovian noise [10.363406065066538]
We develop a framework to quantify the amount of entanglement in the system numerically.
We apply our framework to the case of the Advanced Laser Interferometer Gravitational-Wave Observatory.
arXiv Detail & Related papers (2023-09-21T23:10:29Z) - Effective Description of the Quantum Damped Harmonic Oscillator:
Revisiting the Bateman Dual System [0.3495246564946556]
We present a quantization scheme for the damped harmonic oscillator (QDHO) using a framework known as momentous quantum mechanics.
The significance of our study lies in its potential to serve as a foundational basis for the effective description of open quantum systems.
arXiv Detail & Related papers (2023-09-06T03:53:09Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Onset of non-Gaussian quantum physics in pulsed squeezing with
mesoscopic fields [1.2252572522254723]
We study the emergence of non-Gaussian quantum features in pulsed squeezed light generation with a mesoscopic number of pump photons.
We argue that the state of the art in nonlinear nanophotonics is quickly approaching this regime.
arXiv Detail & Related papers (2021-11-27T02:49:10Z) - Heisenberg treatment of multiphoton pulses in waveguide QED with
time-delayed feedback [62.997667081978825]
We propose a projection onto a complete set of states in the Hilbert space to decompose the multi-time correlations into single-time matrix elements.
We consider the paradigmatic example of a two-level system that couples to a semi-infinite waveguide and interacts with quantum light pulses.
arXiv Detail & Related papers (2021-11-04T12:29:25Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.