The Sound of Decoherence
- URL: http://arxiv.org/abs/2412.17045v1
- Date: Sun, 22 Dec 2024 14:55:25 GMT
- Title: The Sound of Decoherence
- Authors: Robson Christie, James Trayford,
- Abstract summary: This document serves as a companion to the corresponding audio visual simulations of these models available on the YouTube channel Open Quantum Sonification with the Python Codes on GitHub.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore an unconventional bridge between quantum mechanical density matrices and sound by mapping elements of the density matrix and their phases to auditory signals, thus introducing a framework for Open Quantum Sonification. Employing the eigenstates of the Hamiltonian operator as a basis, each quantum state contributes a frequency proportional to its energy level. The off-diagonal terms, which encode coherence and phase relationships between energy levels, are rendered as binaural signals presented separately to the left and right ears. We illustrate this method within the context of open quantum system dynamics governed by Lindblad equations, presenting first an example of quantum Brownian motion of a particle in a thermal bath, and second, a recoherence process induced by boundary driving that results in spin-helix states. This document serves as a companion to the corresponding audio visual simulations of these models available on the YouTube channel Open Quantum Sonification with the Python Codes on GitHub. The auditory analogy presented here provides an intuitive and experiential means of describing quantum phenomena such as tunnelling, thermalisation, decoherence, and recoherence.
Related papers
- A theoretical treatment of optical metasurfaces as an efficient basis for quantum correlations [0.0]
Entanglement is a cornerstone of quantum technology, playing a key role in quantum computing, cryptography, and information processing.<n>Conventional methods for generating entanglement via optical setups rely on beam splitters, nonlinear media, or quantum dots.<n>In this work, we demonstrate that metasurfaces can serve as a promising platform for generating Bell states through a Hamiltonian-driven spin-entanglement mechanism.
arXiv Detail & Related papers (2025-07-13T07:10:39Z) - On the non-Markovian quantum stochastic network dynamics [2.5233776732262045]
We investigate the non-Markovian quantum dynamics based on quantum noise properties in a network of atoms mediated by a waveguide.<n>Different from traditional Markovian quantum systems, the non-Markovian quantum network can be regarded as a quantum system interacting with multiple input quantum noise channels.
arXiv Detail & Related papers (2025-05-06T14:39:37Z) - Quantum-limited generalized measurement for tunnel-coupled condensates [0.4335300149154109]
We implement a generalized measurement scheme based on controlled outcoupling of atoms.
This gives us simultaneous access to number imbalance and relative phase in a system of two tunnel-coupled 1D Bose gases.
arXiv Detail & Related papers (2024-08-13T16:06:59Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - A noise-limiting quantum algorithm using mid-circuit measurements for
dynamical correlations at infinite temperature [0.0]
We introduce a quantum channel built out of mid-circuit measurements and feed-forward.
In the presence of a depolarizing channel it still displays a meaningful, non-zero signal in the large depth limit.
We showcase the noise resilience of this quantum channel on Quantinuum's H1-1 ion-trap quantum computer.
arXiv Detail & Related papers (2024-01-04T11:25:04Z) - Locally purified density operators for noisy quantum circuits [17.38734393793605]
We map an LPDO of $N$ qubits to a pure state of size $2times N$ defined on a ladder and introduce a unified method for managing virtual and Kraus bonds.<n>We simulate numerically noisy random quantum circuits with depths up to $d=40$ using fidelity and entanglement entropy as accuracy measures.
arXiv Detail & Related papers (2023-12-05T16:10:30Z) - Macroscopic quantum entanglement between an optomechanical cavity and a
continuous field in presence of non-Markovian noise [10.363406065066538]
We develop a framework to quantify the amount of entanglement in the system numerically.
We apply our framework to the case of the Advanced Laser Interferometer Gravitational-Wave Observatory.
arXiv Detail & Related papers (2023-09-21T23:10:29Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Generation and structuring of multipartite entanglement in Josephson
parametric system [0.0]
vacuum state of a quantum field may act as a key element for the generation of multipartite quantum entanglement.
We achieve generation of genuine tripartite entangled state and its control by the use of the phase difference between two continuous pump tones.
Our scheme provides a comprehensive control toolbox for the entanglement structure and allows us to demonstrate, for first time to our knowledge, genuine quadripartite entanglement of microwave modes.
arXiv Detail & Related papers (2022-03-17T11:16:32Z) - Revealing higher-order light and matter energy exchanges using quantum
trajectories in ultrastrong coupling [0.0]
We extend the formalism of quantum trajectories to open quantum systems with ultrastrong coupling.
We analyze the impact of the chosen unravelling (i.e., how one collects the output field of the system) for the quantum trajectories.
arXiv Detail & Related papers (2021-07-19T11:22:12Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.