Quantum Computing in Industrial Environments: Where Do We Stand and Where Are We Headed?
- URL: http://arxiv.org/abs/2505.00891v1
- Date: Thu, 01 May 2025 22:13:12 GMT
- Title: Quantum Computing in Industrial Environments: Where Do We Stand and Where Are We Headed?
- Authors: Eneko Osaba, IƱigo Perez Delgado, Alejandro Mata Ali, Pablo Miranda-Rodriguez, Aitor Moreno Fdez de Leceta, Luka Carmona Rivas,
- Abstract summary: This article explores the current state and future prospects of quantum computing in industrial environments.<n>It describes three main paradigms in this field of knowledge: gate-based quantum computers, quantum annealers, and tensor networks.<n>It examines specific industrial applications, such as bin packing, job shop scheduling, and route planning for robots and vehicles.
- Score: 36.46184899525903
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article explores the current state and future prospects of quantum computing in industrial environments. Firstly, it describes three main paradigms in this field of knowledge: gate-based quantum computers, quantum annealers, and tensor networks. The article also examines specific industrial applications, such as bin packing, job shop scheduling, and route planning for robots and vehicles. These applications demonstrate the potential of quantum computing to solve complex problems in the industry. The article concludes by presenting a vision of the directions the field will take in the coming years, also discussing the current limitations of quantum technology. Despite these limitations, quantum computing is emerging as a powerful tool to address industrial challenges in the future.
Related papers
- Ion-Based Quantum Computing Hardware: Performance and End-User Perspective [0.3348742525511937]
This is the second paper in a series of papers providing an overview of different quantum computing hardware platforms.
It follows our first paper on neutral-atom quantum computing.
arXiv Detail & Related papers (2024-05-19T05:04:07Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
We unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling.
We release QUATRO, a collection of quantum computing applications from cognitive models.
arXiv Detail & Related papers (2023-09-01T17:34:53Z) - Quantum Machine Learning Implementations: Proposals and Experiments [0.0]
The article reviews specific high-impact topics such as quantum reinforcement learning, quantum autoencoders, and quantum memristors.
The field of quantum machine learning could be among the first quantum technologies producing results that are beneficial for industry and, in turn, to society.
arXiv Detail & Related papers (2023-03-11T01:02:16Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum computing at the quantum advantage threshold: a down-to-business
review [1.0323063834827415]
We review the state of the art in quantum computing, promising computational models and the most developed physical platforms.
We also discuss potential applications, the requirements posed by these applications and technological pathways towards addressing these requirements.
The review is written in a simple language without equations, and should be accessible to readers with no advanced background in mathematics and physics.
arXiv Detail & Related papers (2022-03-31T16:55:39Z) - Summary: Chicago Quantum Exchange (CQE) Pulse-level Quantum Control
Workshop [4.279232730307778]
Quantum information processing holds great promise for pushing beyond the current frontiers in computing.
We must not only place emphasis on manufacturing better qubits, advancing our algorithms, and developing quantum software.
To scale devices to the fault tolerant regime, we must refine device-level quantum control.
arXiv Detail & Related papers (2022-02-28T08:18:59Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
Digital quantum computers (DQCs) can efficiently perform quantum simulations that are otherwise intractable on classical computers.
The aim of this review is to provide a summary of progress made towards achieving physical quantum advantage.
arXiv Detail & Related papers (2021-01-21T20:10:38Z) - Quantum Computation [0.0]
We will discuss and summarized the core principles and practical application areas of quantum computation.
The mapping of computation onto the behavior of physical systems is a historical challenge.
We will evaluate the essential technology required for quantum computers to be able to function correctly.
arXiv Detail & Related papers (2020-06-04T11:57:18Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.