Addressing Noise and Stochasticity in Fraud Detection for Service Networks
- URL: http://arxiv.org/abs/2505.00946v1
- Date: Fri, 02 May 2025 01:17:03 GMT
- Title: Addressing Noise and Stochasticity in Fraud Detection for Service Networks
- Authors: Wenxin Zhang, Ding Xu, Xi Xuan, Lei Jiang, Guangzhen Yao, Renda Han, Xiangxiang Lang, Cuicui Luo,
- Abstract summary: We develop a novel spectral graph network based on information bottleneck theory (SGNN-IB) for fraud detection in service networks.<n>For the first limitation, SGNN-IB applies information bottleneck theory to extract key characteristics of encoded representations.<n>For the second limitation, SGNN-IB introduces prototype learning to implement signal fusion, preserving the frequency-specific characteristics of signals.
- Score: 11.752120973078116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fraud detection is crucial in social service networks to maintain user trust and improve service network security. Existing spectral graph-based methods address this challenge by leveraging different graph filters to capture signals with different frequencies in service networks. However, most graph filter-based methods struggle with deriving clean and discriminative graph signals. On the one hand, they overlook the noise in the information propagation process, resulting in degradation of filtering ability. On the other hand, they fail to discriminate the frequency-specific characteristics of graph signals, leading to distortion of signals fusion. To address these issues, we develop a novel spectral graph network based on information bottleneck theory (SGNN-IB) for fraud detection in service networks. SGNN-IB splits the original graph into homophilic and heterophilic subgraphs to better capture the signals at different frequencies. For the first limitation, SGNN-IB applies information bottleneck theory to extract key characteristics of encoded representations. For the second limitation, SGNN-IB introduces prototype learning to implement signal fusion, preserving the frequency-specific characteristics of signals. Extensive experiments on three real-world datasets demonstrate that SGNN-IB outperforms state-of-the-art fraud detection methods.
Related papers
- S2FGL: Spatial Spectral Federated Graph Learning [29.56933877275497]
Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs)<n>Current research addresses subgraph-FL from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure.<n>We propose a global knowledge repository to mitigate the challenge of poor semantic knowledge caused by label signal disruption.
arXiv Detail & Related papers (2025-07-03T08:04:49Z) - Dual-channel Heterophilic Message Passing for Graph Fraud Detection [2.479294382835474]
This paper proposes a novel framework, Dual-channel Heterophilic Message Passing (DHMP), for fraud detection.<n>DHMP uses a heterophily separation module to divide the graph into homophilic and heterophilic subgraphs, mitigating the low-pass inductive bias of traditional GNNs.<n>It then applies shared weights to capture signals at different frequencies independently and incorporates a customized sampling strategy for training.
arXiv Detail & Related papers (2025-04-19T06:41:24Z) - Graph Neural Networks Are More Than Filters: Revisiting and Benchmarking from A Spectral Perspective [49.613774305350084]
Graph Neural Networks (GNNs) have achieved remarkable success in various graph-based learning tasks.<n>Recent studies suggest that other components such as non-linear layers may also significantly affect how GNNs process the input graph data in the spectral domain.<n>This paper introduces a comprehensive benchmark to measure and evaluate GNNs' capability in capturing and leveraging the information encoded in different frequency components of the input graph data.
arXiv Detail & Related papers (2024-12-10T04:53:53Z) - Dual-Frequency Filtering Self-aware Graph Neural Networks for Homophilic and Heterophilic Graphs [60.82508765185161]
We propose Dual-Frequency Filtering Self-aware Graph Neural Networks (DFGNN)
DFGNN integrates low-pass and high-pass filters to extract smooth and detailed topological features.
It dynamically adjusts filtering ratios to accommodate both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2024-11-18T04:57:05Z) - Combating Bilateral Edge Noise for Robust Link Prediction [56.43882298843564]
We propose an information-theory-guided principle, Robust Graph Information Bottleneck (RGIB), to extract reliable supervision signals and avoid representation collapse.
Two instantiations, RGIB-SSL and RGIB-REP, are explored to leverage the merits of different methodologies.
Experiments on six datasets and three GNNs with diverse noisy scenarios verify the effectiveness of our RGIB instantiations.
arXiv Detail & Related papers (2023-11-02T12:47:49Z) - BLIS-Net: Classifying and Analyzing Signals on Graphs [20.345611294709244]
Graph neural networks (GNNs) have emerged as a powerful tool for tasks such as node classification and graph classification.
We introduce the BLIS-Net (Bi-Lipschitz Scattering Net), a novel GNN that builds on the previously introduced geometric scattering transform.
We show that BLIS-Net achieves superior performance on both synthetic and real-world data sets based on traffic flow and fMRI data.
arXiv Detail & Related papers (2023-10-26T17:03:14Z) - Message Passing in Graph Convolution Networks via Adaptive Filter Banks [81.12823274576274]
We present a novel graph convolution operator, termed BankGCN.
It decomposes multi-channel signals on graphs into subspaces and handles particular information in each subspace with an adapted filter.
It achieves excellent performance in graph classification on a collection of benchmark graph datasets.
arXiv Detail & Related papers (2021-06-18T04:23:34Z) - A Hierarchical Graph Signal Processing Approach to Inference from
Spatiotemporal Signals [14.416786768268233]
Motivated by the emerging area of graph signal processing (GSP), we introduce a novel method to draw inference from signals.
In this paper we leverage techniques to develop a hierarchical feature extraction approach.
We test our approach on the intracranial EEG (iEEG) data set of the K aggle seizure detection contest.
arXiv Detail & Related papers (2020-10-25T17:08:13Z) - Discriminability of Single-Layer Graph Neural Networks [172.5042368548269]
Graph neural networks (GNNs) have exhibited promising performance on a wide range of problems.
We focus on the property of discriminability and establish conditions under which the inclusion of pointwise nonlinearities to a stable graph filter bank leads to an increased discriminative capacity for high-eigenvalue content.
arXiv Detail & Related papers (2020-10-17T18:52:34Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.