論文の概要: Any-to-Any Vision-Language Model for Multimodal X-ray Imaging and Radiological Report Generation
- arxiv url: http://arxiv.org/abs/2505.01091v1
- Date: Fri, 02 May 2025 08:07:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-05 17:21:19.960091
- Title: Any-to-Any Vision-Language Model for Multimodal X-ray Imaging and Radiological Report Generation
- Title(参考訳): マルチモーダルX線画像とラジオグラフィーレポート生成のための任意の平均視線量モデル
- Authors: Daniele Molino, Francesco di Feola, Linlin Shen, Paolo Soda, Valerio Guarrasi,
- Abstract要約: マルチモーダル医療データ生成に特化して設計されたフレームワークを提案する。
多視点胸部X線の発生と臨床報告により、汎用視覚言語モデルと医療の専門的要件とのギャップを埋める。
我々のフレームワークは、下流疾患分類タスクの実際のデータと比較して、同等またはそれ以上の性能を実現している。
- 参考スコア(独自算出の注目度): 26.589728923739596
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Generative models have revolutionized Artificial Intelligence (AI), particularly in multimodal applications. However, adapting these models to the medical domain poses unique challenges due to the complexity of medical data and the stringent need for clinical accuracy. In this work, we introduce a framework specifically designed for multimodal medical data generation. By enabling the generation of multi-view chest X-rays and their associated clinical report, it bridges the gap between general-purpose vision-language models and the specialized requirements of healthcare. Leveraging the MIMIC-CXR dataset, the proposed framework shows superior performance in generating high-fidelity images and semantically coherent reports. Our quantitative evaluation reveals significant results in terms of FID and BLEU scores, showcasing the quality of the generated data. Notably, our framework achieves comparable or even superior performance compared to real data on downstream disease classification tasks, underlining its potential as a tool for medical research and diagnostics. This study highlights the importance of domain-specific adaptations in enhancing the relevance and utility of generative models for clinical applications, paving the way for future advancements in synthetic multimodal medical data generation.
- Abstract(参考訳): 生成モデルは人工知能(AI)、特にマルチモーダルアプリケーションに革命をもたらした。
しかし、これらのモデルを医療領域に適応させることは、医療データの複雑さと臨床精度の厳密な要求により、ユニークな課題を生んでいる。
本研究では,マルチモーダル医療データ生成に特化して設計されたフレームワークを提案する。
多視点胸部X線の発生と臨床報告により、汎用視覚言語モデルと医療の専門的要件とのギャップを埋める。
MIMIC-CXRデータセットを活用することで,高忠実度画像の生成やセマンティックコヒーレントなレポート作成において,優れた性能を示す。
定量的評価により,FIDとBLEUのスコアで有意な結果が得られ,生成したデータの品質が示された。
特に,下流疾患分類課題の実際のデータと比較すると,本フレームワークは,医療研究・診断のツールとしての可能性を示す上で,同等あるいはそれ以上の性能を達成している。
本研究は, 臨床応用における生成モデルの妥当性と有用性を高めるための領域特異的適応の重要性を強調し, 総合的マルチモーダル医療データ生成における今後の発展への道を開くものである。
関連論文リスト
- Large Language Model Benchmarks in Medical Tasks [14.739357670600103]
本稿では,医療用大規模言語モデル(LLM)タスクに使用される様々なベンチマークデータセットについて調査する。
調査では、データセットをモダリティで分類し、その重要性、データ構造、LLMの開発への影響について論じている。
この論文は、言語多様性、構造化オミクスデータ、および合成に対する革新的なアプローチを含むデータセットの必要性を強調している。
論文 参考訳(メタデータ) (2024-10-28T11:07:33Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - EMERGE: Enhancing Multimodal Electronic Health Records Predictive Modeling with Retrieval-Augmented Generation [22.94521527609479]
EMERGEはRetrieval-Augmented Generation(RAG)駆動のフレームワークであり、マルチモーダルEHR予測モデリングを強化する。
時系列データと臨床ノートからエンティティを抽出し,LLM(Large Language Models)を誘導し,プロのPrimeKGと整合させる。
抽出した知識は、患者の健康状態のタスク関連サマリーを生成するために使用される。
論文 参考訳(メタデータ) (2024-05-27T10:53:15Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records
Analysis via Large Language Models [19.62552013839689]
既存のモデルは、しばしば臨床上の課題に医学的文脈を欠いているため、外部知識の組み入れが促される。
本稿では、マルチモーダルEHR表現を強化するためのRAG(Retrieval-Augmented Generation)駆動フレームワークREALMを提案する。
MIMIC-III 死亡率と可読化タスクに関する実験は,ベースラインよりもREALM フレームワークの優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-10T18:27:28Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。