TActiLE: Tiny Active LEarning for wearable devices
- URL: http://arxiv.org/abs/2505.01160v1
- Date: Fri, 02 May 2025 10:05:50 GMT
- Title: TActiLE: Tiny Active LEarning for wearable devices
- Authors: Massimo Pavan, Claudio Galimberti, Manuel Roveri,
- Abstract summary: Tiny Machine Learning (TinyML) algorithms have seen extensive use in recent years, enabling wearable devices to be genuinely intelligent.<n>TinyML facilitates the on-device execution of the inference phase of machine learning algorithms on embedded and wearable devices.<n>One of the major challenges of On-device Learning (ODL) algorithms is the scarcity of labeled data collected on-device.<n>We propose TActiLE, a novel AL algorithm that selects from the stream of on-device sensor data the ones that would help the ML algorithm improve the most once coupled with labels provided by the user.
- Score: 2.5739385355356714
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tiny Machine Learning (TinyML) algorithms have seen extensive use in recent years, enabling wearable devices to be not only connected but also genuinely intelligent by running machine learning (ML) computations directly on-device. Among such devices, smart glasses have particularly benefited from TinyML advancements. TinyML facilitates the on-device execution of the inference phase of ML algorithms on embedded and wearable devices, and more recently, it has expanded into On-device Learning (ODL), which allows both inference and learning phases to occur directly on the device. The application of ODL techniques to wearable devices is particularly compelling, as it enables the development of more personalized models that adapt based on the data of the user. However, one of the major challenges of ODL algorithms is the scarcity of labeled data collected on-device. In smart wearable contexts, requiring users to manually label large amounts of data is often impractical and could lead to user disengagement with the technology. To address this issue, this paper explores the application of Active Learning (AL) techniques, i.e., techniques that aim at minimizing the labeling effort, by actively selecting from a large quantity of unlabeled data only a small subset to be labeled and added to the training set of the algorithm. In particular, we propose TActiLE, a novel AL algorithm that selects from the stream of on-device sensor data the ones that would help the ML algorithm improve the most once coupled with labels provided by the user. TActiLE is the first Active Learning technique specifically designed for the TinyML context. We evaluate its effectiveness and efficiency through experiments on multiple image classification datasets. The results demonstrate its suitability for tiny and wearable devices.
Related papers
- Dendron: Enhancing Human Activity Recognition with On-Device TinyML Learning [2.8928489670253277]
Human activity recognition (HAR) is a research field that employs Machine Learning (ML) techniques to identify user activities.<n>Recent studies have prioritized the development of HAR solutions directly executed on wearable devices, enabling the on-device activity recognition.<n>This paper introduces Dendron, a novel TinyML methodology designed to facilitate the on-device learning of new tasks for HAR, even in conditions of limited supervised data.
arXiv Detail & Related papers (2025-03-03T09:45:52Z) - Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.<n>Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.<n>We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data [54.934578742209716]
In real-world NLP applications, Large Language Models (LLMs) offer promising solutions due to their extensive training on vast datasets.<n>LLKD is an adaptive sample selection method that incorporates signals from both the teacher and student.<n>Our comprehensive experiments show that LLKD achieves superior performance across various datasets with higher data efficiency.
arXiv Detail & Related papers (2024-11-12T18:57:59Z) - A Continual and Incremental Learning Approach for TinyML On-device Training Using Dataset Distillation and Model Size Adaption [0.4345992906143838]
A new algorithm for incremental learning in the context of Tiny Machine learning (TinyML) is presented.
It is optimized for low-performance and energy efficient embedded devices.
Results show that the proposed algorithm offers a promising approach for TinyML incremental learning on embedded devices.
arXiv Detail & Related papers (2024-09-11T09:02:33Z) - Semantic Meta-Split Learning: A TinyML Scheme for Few-Shot Wireless Image Classification [50.28867343337997]
This work presents a TinyML-based semantic communication framework for few-shot wireless image classification.
We exploit split-learning to limit the computations performed by the end-users while ensuring privacy-preserving.
meta-learning overcomes data availability concerns and speeds up training by utilizing similarly trained tasks.
arXiv Detail & Related papers (2024-09-03T05:56:55Z) - TinySV: Speaker Verification in TinyML with On-device Learning [2.356162747014486]
This paper introduces a new type of adaptive TinyML solution that can be used in tasks, such as the presented textitTiny Speaker Verification (TinySV)
The proposed TinySV solution relies on a two-layer hierarchical TinyML solution comprising Keyword Spotting and Adaptive Speaker Verification module.
We evaluate the effectiveness and efficiency of the proposed TinySV solution on a dataset collected expressly for the task and tested the proposed solution on a real-world IoT device.
arXiv Detail & Related papers (2024-06-03T17:27:40Z) - On-device Online Learning and Semantic Management of TinyML Systems [8.183732025472766]
This study aims to bridge the gap between prototyping single TinyML models and developing reliable TinyML systems in production.
We propose online learning to enable training on constrained devices, adapting local models towards the latest field conditions.
We present semantic management for the joint management of models and devices at scale.
arXiv Detail & Related papers (2024-05-13T10:03:34Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - TinyML: Tools, Applications, Challenges, and Future Research Directions [2.9398911304923456]
TinyML is an embedded machine learning technique that enables ML applications on cheap, resource- and power-constrained devices.
This article reviews various avenues available for TinyML implementation.
arXiv Detail & Related papers (2023-03-23T15:29:48Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - Learning-Based UE Classification in Millimeter-Wave Cellular Systems
With Mobility [67.81523988596841]
Millimeter-wave cellular communication requires beamforming procedures that enable alignment of the transmitter and receiver beams as the user equipment (UE) moves.
For efficient beam tracking it is advantageous to classify users according to their traffic and mobility patterns.
Research to date has demonstrated efficient ways of machine learning based UE classification.
arXiv Detail & Related papers (2021-09-13T12:00:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.