A Provably Convergent Plug-and-Play Framework for Stochastic Bilevel Optimization
- URL: http://arxiv.org/abs/2505.01258v1
- Date: Fri, 02 May 2025 13:26:43 GMT
- Title: A Provably Convergent Plug-and-Play Framework for Stochastic Bilevel Optimization
- Authors: Tianshu Chu, Dachuan Xu, Wei Yao, Chengming Yu, Jin Zhang,
- Abstract summary: Bilevel has recently attracted significant attention in machine learning due to its wide range of applications and advanced hierarchical optimization capabilities.<n>We propose a plug-and-play framework named BO for developing and analyzing bilevel optimization methods.
- Score: 4.703514158152835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bilevel optimization has recently attracted significant attention in machine learning due to its wide range of applications and advanced hierarchical optimization capabilities. In this paper, we propose a plug-and-play framework, named PnPBO, for developing and analyzing stochastic bilevel optimization methods. This framework integrates both modern unbiased and biased stochastic estimators into the single-loop bilevel optimization framework introduced in [9], with several improvements. In the implementation of PnPBO, all stochastic estimators for different variables can be independently incorporated, and an additional moving average technique is applied when using an unbiased estimator for the upper-level variable. In the theoretical analysis, we provide a unified convergence and complexity analysis for PnPBO, demonstrating that the adaptation of various stochastic estimators (including PAGE, ZeroSARAH, and mixed strategies) within the PnPBO framework achieves optimal sample complexity, comparable to that of single-level optimization. This resolves the open question of whether the optimal complexity bounds for solving bilevel optimization are identical to those for single-level optimization. Finally, we empirically validate our framework, demonstrating its effectiveness on several benchmark problems and confirming our theoretical findings.
Related papers
- Stochastic Optimization with Optimal Importance Sampling [49.484190237840714]
We propose an iterative-based algorithm that jointly updates the decision and the IS distribution without requiring time-scale separation between the two.<n>Our method achieves the lowest possible variable variance and guarantees global convergence under convexity of the objective and mild assumptions on the IS distribution family.
arXiv Detail & Related papers (2025-04-04T16:10:18Z) - A Novel Unified Parametric Assumption for Nonconvex Optimization [53.943470475510196]
Non optimization is central to machine learning, but the general framework non convexity enables weak convergence guarantees too pessimistic compared to the other hand.<n>We introduce a novel unified assumption in non convex algorithms.
arXiv Detail & Related papers (2025-02-17T21:25:31Z) - Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
gradient-based algorithms are widely used in bilevel optimization.
We introduce a without-replacement sampling based algorithm which achieves a faster convergence rate.
We validate our algorithms over both synthetic and real-world applications.
arXiv Detail & Related papers (2024-11-07T17:05:31Z) - SPABA: A Single-Loop and Probabilistic Stochastic Bilevel Algorithm Achieving Optimal Sample Complexity [5.046146134689904]
We show that there is no gap in complexity analysis between bilevel and single-level optimization when implementing SPABA.
We propose several other bi-loop or nested bi-level algorithms to improve the state of complexity analysis.
arXiv Detail & Related papers (2024-05-29T05:36:03Z) - A Framework for Bilevel Optimization on Riemannian Manifolds [16.15440177316457]
We introduce a framework for solving bilevel optimization problems.
We present several hypergradient estimation strategies and analyze their estimation errors.
We extend our framework to encompass bilevel optimization and incorporate the use of general retraction.
arXiv Detail & Related papers (2024-02-06T10:45:51Z) - Benchmarking PtO and PnO Methods in the Predictive Combinatorial Optimization Regime [59.27851754647913]
Predictive optimization is the precise modeling of many real-world applications, including energy cost-aware scheduling and budget allocation on advertising.
We develop a modular framework to benchmark 11 existing PtO/PnO methods on 8 problems, including a new industrial dataset for advertising.
Our study shows that PnO approaches are better than PtO on 7 out of 8 benchmarks, but there is no silver bullet found for the specific design choices of PnO.
arXiv Detail & Related papers (2023-11-13T13:19:34Z) - Contextual Stochastic Bilevel Optimization [50.36775806399861]
We introduce contextual bilevel optimization (CSBO) -- a bilevel optimization framework with the lower-level problem minimizing an expectation on some contextual information and the upper-level variable.
It is important for applications such as meta-learning, personalized learning, end-to-end learning, and Wasserstein distributionally robustly optimization with side information (WDRO-SI)
arXiv Detail & Related papers (2023-10-27T23:24:37Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
We propose a framework for implementing batched data-driven evolutionary multi-objective optimization.
It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner.
Our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
arXiv Detail & Related papers (2021-09-12T23:54:26Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.