Reduced-order structure-property linkages for stochastic metamaterials
- URL: http://arxiv.org/abs/2505.01283v1
- Date: Fri, 02 May 2025 13:58:47 GMT
- Title: Reduced-order structure-property linkages for stochastic metamaterials
- Authors: Hooman Danesh, Maruthi Annamaraju, Tim Brepols, Stefanie Reese, Surya R. Kalidindi,
- Abstract summary: It is shown that a dataset as small as $0.61%$ of the entire dataset is sufficient to generate accurate and robust structure-property maps.<n>An uncertainty-based active learning framework is utilized to train a surrogate model with a significantly smaller number of data points compared to the original full dataset.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The capabilities of additive manufacturing have facilitated the design and production of mechanical metamaterials with diverse unit cell geometries. Establishing linkages between the vast design space of unit cells and their effective mechanical properties is critical for the efficient design and performance evaluation of such metamaterials. However, physics-based simulations of metamaterial unit cells across the entire design space are computationally expensive, necessitating a materials informatics framework to efficiently capture complex structure-property relationships. In this work, principal component analysis of 2-point correlation functions is performed to extract the salient features from a large dataset of randomly generated 2D metamaterials. Physics-based simulations are performed using a fast Fourier transform (FFT)-based homogenization approach to efficiently compute the homogenized effective elastic stiffness across the extensive unit cell designs. Subsequently, Gaussian process regression is used to generate reduced-order surrogates, mapping unit cell designs to their homogenized effective elastic constant. It is demonstrated that the adopted workflow enables a high-value low-dimensional representation of the voluminous stochastic metamaterial dataset, facilitating the construction of robust structure-property maps. Finally, an uncertainty-based active learning framework is utilized to train a surrogate model with a significantly smaller number of data points compared to the original full dataset. It is shown that a dataset as small as $0.61\%$ of the entire dataset is sufficient to generate accurate and robust structure-property maps.
Related papers
- ArtGS: Building Interactable Replicas of Complex Articulated Objects via Gaussian Splatting [66.29782808719301]
Building articulated objects is a key challenge in computer vision.<n>Existing methods often fail to effectively integrate information across different object states.<n>We introduce ArtGS, a novel approach that leverages 3D Gaussians as a flexible and efficient representation.
arXiv Detail & Related papers (2025-02-26T10:25:32Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.<n>In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Robust Model-Based Optimization for Challenging Fitness Landscapes [96.63655543085258]
Protein design involves optimization on a fitness landscape.
Leading methods are challenged by sparsity of high-fitness samples in the training set.
We show that this problem of "separation" in the design space is a significant bottleneck in existing model-based optimization tools.
We propose a new approach that uses a novel VAE as its search model to overcome the problem.
arXiv Detail & Related papers (2023-05-23T03:47:32Z) - Linking Properties to Microstructure in Liquid Metal Embedded Elastomers
via Machine Learning [0.0]
Liquid metals (LM) are embedded in an elastomer matrix to obtain soft composites with unique thermal, dielectric, and mechanical properties.
By linking the structure to the properties of these materials, it is possible to perform material design rationally.
arXiv Detail & Related papers (2022-07-24T06:02:26Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Optimal radial basis for density-based atomic representations [58.720142291102135]
We discuss how to build an adaptive, optimal numerical basis that is chosen to represent most efficiently the structural diversity of the dataset at hand.
For each training dataset, this optimal basis is unique, and can be computed at no additional cost with respect to the primitive basis.
We demonstrate that this construction yields representations that are accurate and computationally efficient.
arXiv Detail & Related papers (2021-05-18T17:57:08Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
We propose the Feature weighted Non-negative Matrix Factorization (FNMF) in this paper.
FNMF learns the weights of features adaptively according to their importances.
It can be solved efficiently with the suggested optimization algorithm.
arXiv Detail & Related papers (2021-03-24T21:17:17Z) - A Supervised Machine Learning Approach for Accelerating the Design of
Particulate Composites: Application to Thermal Conductivity [0.0]
A supervised machine learning (ML) based computational methodology for the design of particulate multifunctional composite materials is presented.
Design variables are physical descriptors of the material microstructure that directly link microstructure to the material's properties.
Our optimized ML method is trained over the generated database and establishes the complex relationship between the structure and properties.
arXiv Detail & Related papers (2020-09-30T18:18:00Z) - Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems [20.659457956055366]
We propose a novel data-driven metamaterial design framework based on deep generative modeling.
We show in this study that the latent space of VAE provides a distance metric to measure shape similarity.
We demonstrate our framework by designing both functionally graded and heterogeneous metamaterial systems.
arXiv Detail & Related papers (2020-06-27T03:56:55Z) - METASET: Exploring Shape and Property Spaces for Data-Driven
Metamaterials Design [20.272835126269374]
We show that a smaller yet diverse set of unit cells leads to scalable search and unbiased learning.
Our flexible method can distill unique subsets regardless of the metric employed.
Our diverse subsets are provided publicly for use by any designer.
arXiv Detail & Related papers (2020-06-01T03:36:37Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
We present an integrated data-driven modeling framework based on process modeling, material homogenization, and machine learning.
We are interested in the injection-molded short fiber reinforced composites, which have been identified as key material systems in automotive, aerospace, and electronics industries.
arXiv Detail & Related papers (2020-03-20T20:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.