Linking Properties to Microstructure in Liquid Metal Embedded Elastomers
via Machine Learning
- URL: http://arxiv.org/abs/2208.04146v1
- Date: Sun, 24 Jul 2022 06:02:26 GMT
- Title: Linking Properties to Microstructure in Liquid Metal Embedded Elastomers
via Machine Learning
- Authors: Abhijith Thoopul Anantharanga, Mohammad Saber Hashemi, Azadeh Sheidaei
- Abstract summary: Liquid metals (LM) are embedded in an elastomer matrix to obtain soft composites with unique thermal, dielectric, and mechanical properties.
By linking the structure to the properties of these materials, it is possible to perform material design rationally.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Liquid metals (LM) are embedded in an elastomer matrix to obtain soft
composites with unique thermal, dielectric, and mechanical properties. They
have applications in soft robotics, biomedical engineering, and wearable
electronics. By linking the structure to the properties of these materials, it
is possible to perform material design rationally. Liquid-metal embedded
elastomers (LMEEs) have been designed for targeted electro-thermo-mechanical
properties by semi-supervised learning of structure-property (SP) links in a
variational autoencoder network (VAE). The design parameters are the
microstructural descriptors that are physically meaningful and have affine
relationships with the synthetization of the studied particulate composite. The
machine learning (ML) model is trained on a generated dataset of
microstructural descriptors with their multifunctional property quantities as
their labels. Sobol sequence is used for in-silico Design of Experiment (DoE)
by sampling the design space to generate a comprehensive dataset of 3D
microstructure realizations via a packing algorithm. The mechanical responses
of the generated microstructures are simulated using a previously developed
Finite Element (FE) model, considering the surface tension induced by LM
inclusions, while the linear thermal and dielectric constants are homogenized
with the help of our in-house Fast Fourier Transform (FFT) package. Following
the training by minimization of an appropriate loss function, the VAE encoder
acts as the surrogate of numerical solvers of the multifunctional
homogenizations, and its decoder is used for the material design. Our results
indicate the satisfactory performance of the surrogate model and the inverse
calculator with respect to high-fidelity numerical simulations validated with
LMEE experimental results.
Related papers
- Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - Guided Diffusion for Fast Inverse Design of Density-based Mechanical Metamaterials [41.97258566607252]
This paper proposes a fast inverse design method, whose core is an advanced deep generative AI algorithm, to generate voxel-based mechanical metamaterials.
Specifically, we use the self-conditioned diffusion model, capable of generating a microstructure with a resolution of $1283$ to approach the specified homogenized matrix in just 3 seconds.
arXiv Detail & Related papers (2024-01-24T16:31:50Z) - Mechanical Characterization and Inverse Design of Stochastic Architected
Metamaterials Using Neural Operators [2.4918888803900727]
Machine learning is emerging as a transformative tool for the design of architected materials.
Here, we introduce a new end-to-end scientific ML framework, leveraging deep neural operators (DeepONet)
Results obtained from spinodal microstructures, printed using two-photon lithography, reveal that the prediction error for mechanical responses is within a range of 5 - 10%.
arXiv Detail & Related papers (2023-11-23T05:23:15Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - LS-DYNA Machine Learning-based Multiscale Method for Nonlinear Modeling
of Short Fiber-Reinforced Composites [7.891561501854125]
Short-fiber-reinforced composites (SFRC) are high-performance engineering materials for lightweight structural applications in the automotive and electronics industries.
We present a machine learning-based multiscale method by integrating injection molding-induced microstructures, material homogenization, and Deep Material Network (DMN) for structural analysis of SFRC.
arXiv Detail & Related papers (2023-01-06T22:33:19Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - A Supervised Machine Learning Approach for Accelerating the Design of
Particulate Composites: Application to Thermal Conductivity [0.0]
A supervised machine learning (ML) based computational methodology for the design of particulate multifunctional composite materials is presented.
Design variables are physical descriptors of the material microstructure that directly link microstructure to the material's properties.
Our optimized ML method is trained over the generated database and establishes the complex relationship between the structure and properties.
arXiv Detail & Related papers (2020-09-30T18:18:00Z) - Learning Composable Energy Surrogates for PDE Order Reduction [28.93892833892805]
We use parametric modular structure to learn component-level surrogates, enabling cheaper high-fidelity simulation.
We use a neural network to model the stored potential energy in a component given boundary conditions.
Composable energy surrogates permit simulation in the reduced basis of component boundaries.
arXiv Detail & Related papers (2020-05-13T19:41:24Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
We present an integrated data-driven modeling framework based on process modeling, material homogenization, and machine learning.
We are interested in the injection-molded short fiber reinforced composites, which have been identified as key material systems in automotive, aerospace, and electronics industries.
arXiv Detail & Related papers (2020-03-20T20:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.