Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story
- URL: http://arxiv.org/abs/2505.01336v2
- Date: Tue, 24 Jun 2025 10:24:23 GMT
- Title: Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story
- Authors: Vincenzo De Paola, Riccardo Zamboni, Mirco Mutti, Marcello Restelli,
- Abstract summary: We introduce a novel learning framework that maximizes the entropy of collected data in a parallel setting.<n>Our approach carefully balances the entropy of individual agents with inter-agent diversity, effectively minimizing redundancies.
- Score: 40.82741665804367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parallel data collection has redefined Reinforcement Learning (RL), unlocking unprecedented efficiency and powering breakthroughs in large-scale real-world applications. In this paradigm, $N$ identical agents operate in $N$ replicas of an environment simulator, accelerating data collection by a factor of $N$. A critical question arises: \textit{Does specializing the policies of the parallel agents hold the key to surpass the $N$ factor acceleration?} In this paper, we introduce a novel learning framework that maximizes the entropy of collected data in a parallel setting. Our approach carefully balances the entropy of individual agents with inter-agent diversity, effectively minimizing redundancies. The latter idea is implemented with a centralized policy gradient method, which shows promise when evaluated empirically against systems of identical agents, as well as synergy with batch RL techniques that can exploit data diversity. Finally, we provide an original concentration analysis that shows faster rates for specialized parallel sampling distributions, which supports our methodology and may be of independent interest.
Related papers
- Scalable Multi-Agent Offline Reinforcement Learning and the Role of Information [37.18643811339418]
We propose a novel scalable routine for both dataset collection and offline learning.<n>Agents first collect diverse datasets coherently with a pre-specified information-sharing network.<n>We show how this approach allows to bound the inherent error of the supervised-learning phase of FQI with the mutual information between shared and unshared information.
arXiv Detail & Related papers (2025-02-16T20:28:42Z) - Momentum for the Win: Collaborative Federated Reinforcement Learning across Heterogeneous Environments [17.995517050546244]
We explore a Federated Reinforcement Learning (FRL) problem where $N$ agents collaboratively learn a common policy without sharing their trajectory data.
We propose two algorithms: FedSVRPG-M and FedHAPG-M, which converge to a stationary point of the average performance function.
Our algorithms enjoy linear convergence speedups with respect to the number of agents, highlighting the benefit of collaboration among agents in finding a common policy.
arXiv Detail & Related papers (2024-05-29T20:24:42Z) - Momentum-Based Federated Reinforcement Learning with Interaction and Communication Efficiency [16.002770483584694]
Federated Reinforcement Learning (FRL) has garnered increasing attention.
In this paper, we introduce a new FRL algorithm, named $texttMFPO$.
We prove that by proper selection of momentum parameters and interaction frequency, $texttMFPO$ can achieve $tildemathcalO(H-1Nepsilon-3/2N)$ and $tmathcalO(ilon-1N)$.
arXiv Detail & Related papers (2024-05-24T03:23:37Z) - Compressed Federated Reinforcement Learning with a Generative Model [11.074080383657453]
Reinforcement learning has recently gained unprecedented popularity, yet it still grapples with sample inefficiency.
Addressing this challenge, federated reinforcement learning (FedRL) has emerged, wherein agents collaboratively learn a single policy by aggregating local estimations.
We propose CompFedRL, a communication-efficient FedRL approach incorporating both textitperiodic aggregation and (direct/error-feedback) compression mechanisms.
arXiv Detail & Related papers (2024-03-26T15:36:47Z) - Multi-agent Policy Reciprocity with Theoretical Guarantee [24.65151626601257]
We propose a novel multi-agent policy reciprocity (PR) framework, where each agent can fully exploit cross-agent policies even in mismatched states.
Experimental results on discrete and continuous environments demonstrate that PR outperforms various existing RL and transfer RL methods.
arXiv Detail & Related papers (2023-04-12T06:27:10Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
offline multi-agent reinforcement learning (MARL) aims to learn effective multi-agent policies from pre-collected datasets.
One agent learned by offline MARL often inherits this random policy, jeopardizing the performance of the entire team.
We propose a novel framework called Shared Individual Trajectories (SIT) to address this problem.
arXiv Detail & Related papers (2022-11-28T18:11:26Z) - Plan Better Amid Conservatism: Offline Multi-Agent Reinforcement
Learning with Actor Rectification [74.10976684469435]
offline reinforcement learning (RL) algorithms can be transferred to multi-agent settings directly.
We propose a simple yet effective method, Offline Multi-Agent RL with Actor Rectification (OMAR), to tackle this critical challenge.
OMAR significantly outperforms strong baselines with state-of-the-art performance in multi-agent continuous control benchmarks.
arXiv Detail & Related papers (2021-11-22T13:27:42Z) - On Reward-Free RL with Kernel and Neural Function Approximations:
Single-Agent MDP and Markov Game [140.19656665344917]
We study the reward-free RL problem, where an agent aims to thoroughly explore the environment without any pre-specified reward function.
We tackle this problem under the context of function approximation, leveraging powerful function approximators.
We establish the first provably efficient reward-free RL algorithm with kernel and neural function approximators.
arXiv Detail & Related papers (2021-10-19T07:26:33Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z) - Multi-agent Policy Optimization with Approximatively Synchronous
Advantage Estimation [55.96893934962757]
In multi-agent system, polices of different agents need to be evaluated jointly.
In current methods, value functions or advantage functions use counter-factual joint actions which are evaluated asynchronously.
In this work, we propose the approximatively synchronous advantage estimation.
arXiv Detail & Related papers (2020-12-07T07:29:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.