Momentum for the Win: Collaborative Federated Reinforcement Learning across Heterogeneous Environments
- URL: http://arxiv.org/abs/2405.19499v1
- Date: Wed, 29 May 2024 20:24:42 GMT
- Title: Momentum for the Win: Collaborative Federated Reinforcement Learning across Heterogeneous Environments
- Authors: Han Wang, Sihong He, Zhili Zhang, Fei Miao, James Anderson,
- Abstract summary: We explore a Federated Reinforcement Learning (FRL) problem where $N$ agents collaboratively learn a common policy without sharing their trajectory data.
We propose two algorithms: FedSVRPG-M and FedHAPG-M, which converge to a stationary point of the average performance function.
Our algorithms enjoy linear convergence speedups with respect to the number of agents, highlighting the benefit of collaboration among agents in finding a common policy.
- Score: 17.995517050546244
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We explore a Federated Reinforcement Learning (FRL) problem where $N$ agents collaboratively learn a common policy without sharing their trajectory data. To date, existing FRL work has primarily focused on agents operating in the same or ``similar" environments. In contrast, our problem setup allows for arbitrarily large levels of environment heterogeneity. To obtain the optimal policy which maximizes the average performance across all potentially completely different environments, we propose two algorithms: FedSVRPG-M and FedHAPG-M. In contrast to existing results, we demonstrate that both FedSVRPG-M and FedHAPG-M, both of which leverage momentum mechanisms, can exactly converge to a stationary point of the average performance function, regardless of the magnitude of environment heterogeneity. Furthermore, by incorporating the benefits of variance-reduction techniques or Hessian approximation, both algorithms achieve state-of-the-art convergence results, characterized by a sample complexity of $\mathcal{O}\left(\epsilon^{-\frac{3}{2}}/N\right)$. Notably, our algorithms enjoy linear convergence speedups with respect to the number of agents, highlighting the benefit of collaboration among agents in finding a common policy.
Related papers
- Towards Fast Rates for Federated and Multi-Task Reinforcement Learning [34.34798425737858]
We propose Fast-FedPG, a novel federated policy algorithm with a carefully designed bias-correction mechanism.
Under a gradient-domination condition, we prove that our algorithm guarantees (i) fast linear convergence with exact gradients, and (ii) sub-linear rates that enjoy a linear speedup w.r.t. the number of agents with noisy, truncated policy gradients.
arXiv Detail & Related papers (2024-09-09T02:59:17Z) - Finite-Time Analysis of On-Policy Heterogeneous Federated Reinforcement Learning [8.632943870358627]
Federated reinforcement learning (FRL) has emerged as a promising paradigm for reducing the sample complexity of reinforcement learning tasks.
We introduce FedSARSA, a novel on-policy reinforcement learning scheme equipped with linear function approximation.
We show that FedSARSA converges to a policy that is near-optimal for all agents, with the extent of near-optimality proportional to the level of heterogeneity.
arXiv Detail & Related papers (2024-01-27T02:43:45Z) - Federated Natural Policy Gradient and Actor Critic Methods for Multi-task Reinforcement Learning [46.28771270378047]
Federated reinforcement learning (RL) enables collaborative decision making of multiple distributed agents without sharing local data trajectories.
In this work, we consider a multi-task setting, in which each agent has its own private reward function corresponding to different tasks, while sharing the same transition kernel of the environment.
We learn a globally optimal policy that maximizes the sum of the discounted total rewards of all the agents in a decentralized manner.
arXiv Detail & Related papers (2023-11-01T00:15:18Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Federated Reinforcement Learning with Environment Heterogeneity [30.797692838836277]
We study a Federated Reinforcement Learning (FedRL) problem in which $n$ agents collaboratively learn a single policy without sharing the trajectories they collected during agent-environment interaction.
We propose two federated RL algorithms, textttQAvg and textttPAvg.
arXiv Detail & Related papers (2022-04-06T07:21:00Z) - Convergence Rates of Average-Reward Multi-agent Reinforcement Learning
via Randomized Linear Programming [41.30044824711509]
We focus on the case that the global reward is a sum of local rewards, the joint policy factorizes into agents' marginals, and full state observability.
We develop multi-agent extensions, whereby agents solve their local saddle point problems and then perform local weighted averaging.
We establish that the sample complexity to obtain near-globally optimal solutions matches tight dependencies on the cardinality of the state and action spaces.
arXiv Detail & Related papers (2021-10-22T03:48:41Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z) - Policy Information Capacity: Information-Theoretic Measure for Task
Complexity in Deep Reinforcement Learning [83.66080019570461]
We propose two environment-agnostic, algorithm-agnostic quantitative metrics for task difficulty.
We show that these metrics have higher correlations with normalized task solvability scores than a variety of alternatives.
These metrics can also be used for fast and compute-efficient optimizations of key design parameters.
arXiv Detail & Related papers (2021-03-23T17:49:50Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
implicit distributional actor-critic (IDAC) built on two deep generator networks (DGNs)
Semi-implicit actor (SIA) powered by a flexible policy distribution.
We observe IDAC outperforms state-of-the-art algorithms on representative OpenAI Gym environments.
arXiv Detail & Related papers (2020-07-13T02:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.